• Title/Summary/Keyword: Mössbauer spectroscopy

Search Result 50, Processing Time 0.022 seconds

Crystallographic, Magnetic and Mössbauer Study of Phase Transition in LaVO3

  • Yoon, Sung-Hyun
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.108-112
    • /
    • 2007
  • Nature of phase transition in $LaVO_3$ has been studied using X-ray diffraction, SQUID magnetometer, and $M\"{o}ssbauer$ spectroscopy with 1% of $^{57}Fe$ doped sample. The crystal structure was orthorhombic with space group Pnma. Antiferromagnetic phase transition temperature $T_N$ was 140K, below which a weak ferromagnetic trace has been found. $M\"{o}ssbauer$ spectra below $T_N$ were single set of hyperfine sextet, which enabled us to discard the possibility of two inequivalent magnetic sites or uncompensated antiferromagnetism. Hyperfine magnetic field abruptly disappeared as low as about 90K, much below $T_N$.

A Study on Distribution of Mössbauer Spectroscopy in Al Doped Garnet (Al을 치환한 Garnet의 Mössbauer분포 함수 연구)

  • Min, Byoung-Ki;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Al$\^$3+/ substituted garnet Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ (x=0.0, 0.25, 0.5, 0.75, 1.0) was fabricated by sol-gel method. The crystallographic and magnetic properties of Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), and vibrating samples magnetometer (VSM). The crystal structure of Y$_3$Fe$\_$5/O$\_$12/ is found to be a cubic with the lattice constant a$\_$0/= 12.381$\pm$0.005 $\AA$. The lattice constants a$\_$0/ decreases linearly from 12.381 to 12.304 A as the Al concentration (x) increases from x=0.0 to 1.0. Mossbauer spectra of measured at Y$_3$Fe$\_$5-x/A1$\_$x/O$\_$12/ various absorber temperatures of 13 to 600 K. Mossbauer spectrum for x = 0.0 is consist of well resolved two sets of six line patterns. While with increasing Al concentration outer sextet patters, which is originating from octahedral sites, broadens widely. These phenomena are interpreted in terms of random probability distributions of Fe$\^$3+/ and Al$\^$3+/ in tetrahedral site.

Application of Mössbauer Spectroscopy for Steel Industry (철강산업에 뫼스바우어 분광기법의 응용)

  • Oh, Sei-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.51-59
    • /
    • 2006
  • $M\"{o}ssbauer$ spectroscopy is one of the very powerful analytical methods for studying the steel properties. It is the most important advantage that the steel properties can be quantitatively analyzed by Mossbauer analysis. The quantitative analysis could provide various information about corrosion products, environmental condition, kind of steel, foreign element, particle size, etc. It can be also applied for the study of strength and phase of steel, as functions of the kind of steel and foreign elements.

MÖssbauer Spectrum of Lava in Jeju Island (제주도 용암의 MÖssbauer 스펙트럼 연구)

  • Hong, Sung-Rak;Ko, Jeong-Dae;Choi, Won-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.226-230
    • /
    • 2003
  • In this study, we analyzed the volcanic rock and scoria samples taken from special sites of Jeju island in two ways at the room temperature. One is the analysis of the chemical composition using X-ray fluorescence spectrometer, the other is the analysis of minerals in the samples, oxidized iron's genus, valence state and magnetic properties using X-ray diffractometry and Mossbauer spectroscopy. We believe that the volcanic rock and scoria samples are chiefly made of silicate minerals, like SiO$_2$, and they also have olivine, pyroxene, ilmenite, hematite and magnetite. The major Fe fractions of the volcanic rock samples are 2+ charge state and those of the scoria samples are 3+ charge state.

Mössbauer Spectroscopic Study of Non-figure Plain Coarse Pottery from Jeju Island (Mössbauer spectroscopy를 이용한 제주도 무문(無紋)토기의 연구)

  • Yoon, Tae-Gun;Ko, Jeong-Dae;Sung, Rak-Hong
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • The studies of non-figure plain coarse pottery from Jeju island is very important because it can explain the characters of plain coarse potteries of the bronze age and the early iron age. In this study, We analyzed the non-figure plain coarse popery from Jeju island in two ways. One is analysis of the chemical composition using X-ray fluorescence spectrometer and X-ray diffraction, the other is analysts of clay mineral contained iron, oxidized iron's genus, valence state and magnetic properties using Mossbauer spectroscopy. We confidence that non-figure plain coarse pottery is chiefly made of silicate minerals, like SiO$_2$. The content of noncrystalline ferrihydrite is supposed to be below 5-10 wt%, non-figure plain coarse pottery is considered to partly consist of Jeju island clay, which is made of neutral volcanic rock and the valence state of iron is Fe$\^$2+/ and Fe$\^$3+/. We presume the reason that the magnetic hyperfine field is lower than that of pure goethite is the change of crystal structure which transforms the combination states of Fe ions while the clay is being fired.

Charge Structure of the Combined System (La0.6Sr0.4MnO3)0.7(La0.6Sr0.4FeO3)0.3 as Investigated by Mössbauer Spectroscopy

  • Uhm, Young Rang;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.18-20
    • /
    • 2002
  • The charge structures of (LSMO) and of the combined system $(La_{ 0.6}Sr_{0.4}FeO_3$(LSMO) and of the combined system (La_{0.6}Sr_{0.4}MnO_3)_{0.7}(La_{0.6}Sr_{0.4}/FeO_3)_{0.3}$are investigated by using M$\ddot{o}$ssbauer spectroscopy. The antiferromagnetically ordered $(La_{0.6}Sr_{0.4}FeO_3$(LSFO) has possible charges of Fe^{3+} and Fe^{4+}$, which include a low-spin $Fe^{4+}$ state at and above 230 K. The temperature dependences of the M$\ddot{o}$ssbauer spectra for the $(La_{ 0.6}Sr_{0.4}FeO_3$ system and for the combined $(LSMO)_{ 0.7}(LSFO)_{0.3}$ system are fitted as three sets of Zeeman patterns corresponding to $Fe^{3+}$ and $Fe^{4+} below 230 K. At and above 230 K, the fitted M$\ddot{o}$ssbauer spectra for the combined system are the same in all temperature ranges. Above 230 K, $(La_{0.6}Sr_{0.4}FeO_3$ spectrum consists of two sets of six Lorentzians for $Fe^{3+}$ and one line for low spin $Fe^{4+}$. It is worth noting that large fields are induced in the combined system.

Mössbauer Analysis of Cations on Iron Oxyhydroxide Formation

  • Oh, Sei-Jin;Kwon, Soon-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • Effect of different cations to the formation of iron oxyhydroxide was studied using $M\ddot{o}ssbauer$ spectroscopy, X-ray diffraction (XRD) and BET. Redox Potential and pH were measured for the determination of the internal reaction rate, as well. The phases of iron oxyhydroxide could not be the same with each other, due to the presence of different cations in solution. Although the oxyhydroxide compound was composed of the same phases, the fraction of each phase was different from each other. The internal reaction rate was varied by the substitution of cation. It could be a cause of the different phase and particle size of oxyhydroxide compound.