• Title/Summary/Keyword: M/G/1 queue

Search Result 94, Processing Time 0.022 seconds

(N, n)-Preemptive Repeat-Different Priority Queues ((N, n)-선점 재샘플링-반복 우선순위 대기행렬)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.66-75
    • /
    • 2017
  • Priority disciplines are an important scheme for service systems to differentiate their services for different classes of customers. (N, n)-preemptive priority disciplines enable system engineers to fine-tune the performances of different classes of customers arriving to the system. Due to this virtue of controllability, (N, n)-preemptive priority queueing models can be applied to various types of systems in which the service performances of different classes of customers need to be adjusted for a complex objective. In this paper, we extend the existing (N, n)-preemptive resume and (N, n)-preemptive repeat-identical priority queueing models to the (N, n)-preemptive repeat-different priority queueing model. We derive the queue-length distributions in the M/G/1 queueing model with two classes of customers, under the (N, n)-preemptive repeat-different priority discipline. In order to derive the queue-length distributions, we employ an analysis of the effective service time of a low-priority customer, a delay cycle analysis, and a joint transformation method. We then derive the first and second moments of the queue lengths of high- and low-priority customers. We also present a numerical example for the first and second moments of the queue length of high- and low-priority customers. Through doing this, we show that, under the (N, n)-preemptive repeat-different priority discipline, the first and second moments of customers with high priority are bounded by some upper bounds, regardless of the service characteristics of customers with low priority. This property may help system engineers design such service systems that guarantee the mean and variance of delay for primary users under a certain bounds, when preempted services have to be restarted with another service time resampled from the same service time distribution.

CORRECTION AND ADDENDUM: ANALYSIS OF UNFINISHED WORK AND QUEUE WAITING TIME FOR THE M/G/1 QUEUE WITH D-POLICY

  • Park, Yon-Il;Chae, Kyung-Chul
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.3
    • /
    • pp.311-311
    • /
    • 2003
  • This paper contains the following errors. 1. "$I_{\{x>D\}}{\lambda}dt_{p0}(t)s(x)$" should be added to the right hand side of (2.3). 2. "$I_{\{x>D\}}{\lambda}_{p0}(t)s(x)$" should be added to the right hand side of (2.6). 3. "$I_{\{x>D\}}{\lambda}_{p0}s(x)$" should be added to the right hand side of (2.9). 4. In Theorem 2.3 and its proof, "${\lambda}{\int}_{0}^{D}f(y)s(x-y)dy$" appears three times (including one in (2.20)). To each of these, "${\lambda}_{po}s(x)$" should be added. 5. In Remark 2.5, "${\lambda}dt_{p0}/s(x)dx" should be added to "${\int}_{0}^{D}{\lambda}dt\;s(x-y)dxf(y)dy$". As a result of these corrections, a simpler proof of Theorem 2.3 becomes available. Substituting (2.18), (2.21), (2.22) into the left hand side of (2.20) and comparing the result with (2.10), we have the right hand side of (2.20).

A Study on Interconnectioned LAN of Token Ring Network (토큰링 네트워크가 상호 연결된 근거리 통신망에 관한 연구)

  • 이상훈;김경식;강준길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1206-1218
    • /
    • 1992
  • Token ring systems which control to switch the data stream of networks by passing the token have been widely used to medium access controls in many ring or bus topology LANs. The system could be modeled for analysis as single-server-multi-queue system of the cyclic service method. These concepts could be expanded to multi-token ring systems interconnected with single ring consisting of bridges implemented simply to be stored and transmitted. In the proposal for the performance analysis of the interconnected token ring system, in has been assumed M/G/1 queueing model that frame arrivals are the Poisson process at each station queue and frame sizes are independently and identically distributed. And the average time delays were analyzed mathematically for arbitrary frame transferred from source station to destination area. The time delay of the frame transmission could be explained as the sum of the average time which the token passed from arbitrary position to source station, such as the waiting time in the source station transferring the previous arrival frames, and the propagation time from source station to interdestinated point. These delays were given as the sum of the duration from inner and outer bridge queues, the time delays from inner and outer bridge queues, and the time from outer bridge queue to destination station. These results were investigated by varing parameters effected to total time delays. In the results, those factors to be effected to dominant the total time delays were increased were in the cases of the high arrival rates and the high ration of destination of the other outerring. The system were shown the time delays increased exponentially in spite of the priority service policy. In order to decreasing the number of outerrings and increasing the number of nodes in backbone relatively, so the systems could be decreased the total delay in the interconnected token ring system.

  • PDF

Performance Comparisons of Two DCF Methods in the IEEE 802.11 Protocol (IEEE 802.11 프로토콜에서 두 DCF 방식의 성능 비교)

  • Park, Chul-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1320-1328
    • /
    • 2007
  • In recent year, the popularity of WLAN has generated much interests on improvement and performance analysis of the IEEE 802.11 protocol. In this paper, we analyze two medium access methods of the IEEE 802.11 MAC protocol by investigating the MAC layer packet service times when arrival packet sizes have a general probability distribution. We use the M/G/1/K queueing model to analyze the throughput and the delay performance of IEEE 802.11 MAC protocol in a wireless LAN. We compare the performances of Basic access method and RTS/CTS access method. We take some numerical examples for the system throughput and the queue dynamics including the mean packet delay and packet blocking probability.

Analysis of the Push-Pull Queueing System under the N-Policy (N-정책을 갖는 Push-Pull 대기행렬 시스템의 분석)

  • Kim, Soo Yeon;Kim, Nam Ki;Kim, Jin Dong;Lee, Sang Min;Chae, Kyung Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.4
    • /
    • pp.297-302
    • /
    • 2005
  • Kopzon and Weiss adopted the notion of push-pull into the queueing system recently. We extend this queueing system to the ($N_1,N_2$)-policy version such that the original system corresponds to the special case $N_1=N_2=1$. For the extended system, we perform the cycle analysis and obtain the PGF of the stationary number of customers in the system.

Stochastic Traffic Congestion Evaluation of Korean Highway Traffic Information System with Structural Changes

  • Lee, Yongwoong;Jeon, Saebom;Park, Yousung
    • Asia pacific journal of information systems
    • /
    • v.26 no.3
    • /
    • pp.427-448
    • /
    • 2016
  • The stochastic phenomena of traffic network condition, such as traffic speed and density, are affected not only by exogenous traffic control but also by endogenous changes in service time during congestion. In this paper, we propose a mixed M/G/1 queuing model by introducing a condition-varying parameter of traffic congestion to reflect structural changes in the traffic network. We also develop congestion indices to evaluate network efficiency in terms of traffic flow and economic cost in traffic operating system using structure-changing queuing model, and perform scenario analysis according to various traffic network improvement policies. Empirical analysis using Korean highway traffic operating system shows that our suggested model better captures structural changes in the traffic queue. The scenario analysis also shows that occasional reversible lane operation during peak times can be more efficient and feasible than regular lane extension in Korea.

Reliability Analysis of Multi-Component System Considering Preventive Maintenance: Application of Markov Chain Model (예방정비를 고려한 복수 부품 시스템의 신뢰성 분석: 마코프 체인 모형의 응용)

  • Kim, Hun Gil;Kim, Woo-Sung
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.313-322
    • /
    • 2016
  • Purpose: We introduce ways to employ Markov chain model to evaluate the effect of preventive maintenance process. While the preventive maintenance process decreases the failure rate of each subsystems, it increases the downtime of the system because the system can not work during the maintenance process. The goal of this paper is to introduce ways to analyze this trade-off. Methods: Markov chain models are employed. We derive the availability of the system consisting of N repairable subsystems by the methods under various maintenance policies. Results: To validate our methods, we apply our models to the real maintenance data reports of military truck. The error between the model and the data was about 1%. Conclusion: The models developed in this paper fit real data well. These techniques can be applied to calculate the availability under various preventive maintenance policies.

How to Reinvent Network Services for All (상이한 네트워크 서비스 어떻게 향상시킬까?)

  • Kim, Yong-J.;Lee, Seo-Jun;Lim, Jay-Ick
    • Korean Management Science Review
    • /
    • v.25 no.3
    • /
    • pp.87-99
    • /
    • 2008
  • Besieged by needs for upgrading the current Internet, social pressures, and regulatory concerns, a network operator may be left with few options to Improve his services. Yet he can still consider a transition prioritizing network services. In this paper, we describe a transition from a non-priority system to a prioritized one, using non-preemptive M/G/1 model. After reviewing the constraints and theoretical results from past research, we describe steps making the transition Pareto-improving, which boils down to a multi-goal search for a Pareto-improving state. We use a genetic algorithm that captures actual transition costs along with incentive-compatible and Pareto-Improving constraints. Simulation results demonstrate that the initial post-transition solutions are typically Pareto-improving. for non Pareto-improving solutions, the heuristic quickly generates Pareto-improving and incentive-compatible solutions.

The Analysis of an Opportunistic Spectrum Access with a Strict T-preemptive Priority Discipline (엄격한 T-축출 우선순위 대기행렬을 이용한 기회 주파수 접근 방식의 성능 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.162-170
    • /
    • 2012
  • We propose a new priority discipline called the strict T-preemptive priority discipline, and derive the waiting time distributions of each class in the strict T-preemptive priority M/G/1 queue. Using this queueing analysis, we evaluate the performance of an opportunistic spectrum access in cognitive radio networks, where a communication channel is divided into time slots, a licensed primary user is assigned to one channel, and multiple unlicensed secondary users may opportunistically exploit time slots unused by the primary user. We also present a numerical example of the analysis of the opportunistic spectrum access where the arrival rates and service times distributions of each users are identical.

Estimation of the Expected Time in System of Trip-Based Material Handling Systems (트립에 기초한 물자취급 시스템에서 자재의 평균 체류시간에 대한 추정)

  • Cho, Myeon-Sig
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.2
    • /
    • pp.167-181
    • /
    • 1995
  • We develop an analytical model to estimate the time a workpiece spends in both input and output queues in trip-based material handling systems. The waiting times in the input queues are approximated by M/G/1 queueing system and the waiting times in the output queues are estimated using the method discussed in Bozer, Cho, and Srinivasan [2]. The analytical results are tested via simulation experiment. The result indicates that the analytical model estimates the expected waiting times in both the input and output queues fairly accurately. Furthermore, we observe that a workpiece spends more time waiting for a processor than waiting for a device even if the processors and the devices are equally utilized. It is also noted that the expected waiting time in the output queue with fewer faster devices is shorter than that obtained with multiple slower devices.

  • PDF