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m Abstract m

Besieged by needs for upgrading the current Internet, social pressures, and regulatory concerns, a network operator
may be left with few options to improve his services. Yet he can still consider a transition prioritizing network services.
In this paper, we describe a transition from a non-priority system to a prioritized one, using non-preemptive M/G/1
model. After reviewing the constraints and theoretical results from past research, we describe steps making the tran-
sition Pareto-improving, which boils down to a multi-goal search for a Pareto-improving state. We use a genetic algo-
rithm that captures actual transition costs along with incentive-compatible and Pareto-improving constraints.
Simulation results demonstrate that the initial post-transition solutions are typically Pareto-improving. For non
Pareto-improving solutions, the heuristic quickly generates Pareto-improving and incentive-compatible solutions.

Keywords : Network Management, Priority Queue, Differential Treatment of Services, Genetic

Algorithm
1. Introduction faced only to rekindle the interest in preferential
treatments of heterogeneous Internet traffic.
In recent years, the “net neutrality” has sur- With applications such as IPTV taking up larger

cETY 1200849 10 249 =2AXEHA: 20084 11€ 07¢
¢ AR AFHRIT w5
w opEdsL AQUe W



88 A4 - o]

chunks of Internet traffic, a few network carriers
have implicitly considered or planned differential
Internet services to control the unwieldy traffic
growth. However, such moves have been met
with public protests and regulatory concerns
both in the US and in Korea. They fret that pri-
oritized networks would drive out less fortunate
users and induce discrimination, directly suffo-
cating the free spirit of the original Internet.
Joining the camp are Internet portals and service
providers like Yahoo and Google that insist that
the carriers should remain neutral to the Internet
traffic regardless of source, destination, traffic
volume, or time of a day. Although incidents such
as carriers refusing VoIP traffic were quickly
noticed and subsequently resolved by regulating
authorities, whether the net neutrality should be
maintained or not will be recurring in the fore-
seeable future because the Internet is still rapidly
evolving and it is hard to expect what it will take
to get this matter settled (Kwak 2006; Laxton
2006; Hahn and Wallsten 2006).

Furthermore, much to the chagrin of many re-
searchers and network carriers, upgrading the
current Internet on a global basis has been found
extremely difficult for lack of compatible net-
work protocols and exorbitant costs. Complicat-
ing the situation is the fact that the market is
driven by network carriers confined in their
home lands, regulated by different laws and gov-
ernmental agencies, and under different market
conditions. As a result, despite that network car-
riers want to expand network capacity and to ac-
commodate new QoS protocols—all geared to
help smooth growth of the Internet—, carriers
seem to be left with few options to exercise to
change their status quo.

The primary goal of this paper is to illustrate

that a network carrier still has a way to improve
its operation without making any customers
worse off, thus making itself immune from the
net neutrality controversy. For example, delay—
sensitive VoIP service can have a higher priority
over other Internet applications like e-mail so
that VoIP traffic does not suffer transmission
delays. To illustrate such potentials in commurni—
cation networks we use a multi-class M/G/1
queuing model approximating a queueing network
owned by a network carrier who is a monopolist
maximizing net system value defined as the sum
of values of finished jobs minus the total network
delay costs.

Combating network delay has a long history
and a substantial body of research suggests that
networks better be operated as prioritized (multi-
class) rather than non-priority (single-class) sys-
tems. For example, empiﬁcal studies (Edell and
Varaiya 1999; Dovrolis and Ramanathan 1999;
Cochi 1993) demonstrated the needs and benefits
of prioritized operation. In economics literature,
it was Pigou (1920) who first studied the queue-
ing delay effect in a congestible resource and Naor
(1969), Knudsen (1972), and Mendelson (1985) ad-
vanced the idea in different contexts. The model
used in this paper largely borrows from Mendel-
son and Whang (1990) who showed that prior—-
ity-and time-dependent pricing induces in-
dividual users to select a correct priority class
and that the resulting state is both optimal and
incentive-compatible. In the area of network
management, although there have been a few
papers that address transition issues similar to
ours (for example, see Cochi et al., 1993), none
of them have examined welfare aspects of the
transition from a non-priority to a prioritized

system rigorously, which is the primary focus of
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this paper.

The plan of this paper is as follows. First, we
describe the system and state fundamental theo-
rems showing the superiority of prioritized sys-
tem in terms of total delay cost, the full price
(also known as social marginal cost) faced by in-
dividual jobs, and revenue. We then show that
not every transition is Pareto-improving in the
sense that there are some user classes dis-
advantaged by the transition, which drives us to
devise a theoretical model incorporating tran-
sition cost, an externality cost impacting on in—
dividual users after the transition. However, the
computational complexity associated with the
transaction cost motivates us to develop an effi-
cient heuristic to search for Pareto-improving
transitions. Through a simulation using a genetic
algorithm, we test the quality of post-transition
solutions and the quality of solutions generated
by the heuristic. Discussing the characteristics
of the solutions then follows before concluding

remarks and future research directions.

2. Description of the System-
Before and After Prioritization

In this section, we describe the system before
and after the transition along with results central
to our discussion. We assume that arrival of jobs
to the network is governed by N independent
Poisson processes, where class—i jobs arrive at
rate \,. Following Mendelson and Whang (1990),
let v;(),) denote the contribution of class—i jobs
when the class’s arrival rate to the system is A,
where V;()) is monotone increasing, contin—
uously differentiable, and strictly concave. The
marginal class-i user’s valuation of a completed
job will be aV;(),)/6A, and the system value func-

tion, V()), is defined as the sum of individual

classes, ie. V(g):Ek’:1 v, (A,) where A= ()

A
Jobs are served on FCFS basis and class— service
time distribution is generally distributed with mean

¢ and second moment ¢, If the network is run

i

as a non—priority M/G/1, the expected sojourn time
of class-i of non-priority system, ST, is

STHA) = Ay/Sy+c, where S, = 2 Ak_ck.,?:lﬂs;,

i

and 4, =% Ad?/2 (Kleinrock 1976). If «; is the
! E=1

delay cost per unit time for a class—i user, the total delay

N
cost is then defined as 7C' (V) = ZA_: 1 uNSTHN) and

the net value maximizing problem is to choose

. ~
A={A, = Ay) to maximize Ekzl (V. () —u,

(Ay/8y+¢,)) so that the optimal arrival rate vector
AT =0, -~ A} satisfies the first-order conditions

oV, (\) /o, =v,STHA E 17;,/\dST A)/ax,.

Assuming that at least one internal solution
exists under the demand relation, the class—i ex-
ternality cost be equated with the optimal price,

Ry
ie, p/ (A7) :Eh

s NOSTHAT )8, As Pigou

(1920) and other researchers found, p/ (A7) is to
induce class~i users to pay the full price (ie., the
social marginal cost) but may fail to be in-
centive-compatible because a class—i user will
select pl(A*) whenever pl(A*)<pi(A7) and
ptA ) =minfpl (A7), = py(A7)}. Consequently
the system may not reach an optimal state and
we need to introduce a time-dependent pricing

I — . hY
such as p' (t):(tZ/QSfVJrA}t/SA\vl)Ek:1 u N

where 5} :szku At and A= AdP /o



-, N (Kim and Mannino 2003).
Now suppose that the network carrier decides

for i=1,

to transform the non-priority system to a non-
preemptive priority M/G/1 and to apply the
so—called v,/¢; priority assignment rule such that
v/e, = v /e, if i<j for i je{1, ~, N} and class-i
users have the higher priority over class—j users.
The rule is optimal for a nonpreemptive M/G/1
with a given A= (A, \,). The expected so-

journ time of class—i, S7 is ST,(\)=A,/5,5,_, +¢,

i

(Keinlock 1976) and the total delay cost, 7C()\),

is the sum of delay costs of individual classes :

N
k&

Q=Y uA(dy /8,8,_1+¢.). The net val~

ue maximizing problem for the prioritized sys-

tem is to choose A=(\, -, A} to maximize

N X .
Zk:l (V,(\)~ v, 08T (N). Assuming that the

optimal arrival rate vector A9 =05, -, A3) for

the first-order conditions

aV(A) /oA, = v, 8T {(A)

+{ ~ Ulv/\kCEz_) 72/\50;11;\/‘ L (?’z/\kczés\f Tik)\kﬂiézv
k=128, .8, 8,57 e=ivll ST 8, S, .82

exists, the optimal price for class-i, p,(A"), will

be set as
a5« A0 Ly (AR, Aeal))
e ASE s Tl PSR, SE L SE)
2/ N a )
G / U A — i
+- Y =2 | where 57 =1— e
2 (1;;1 S5 512 ! Ek:l B

and AH = Z;zl A /2 respectively. Yet the above

optimal prices are not incentive-compatible (Me-
ndelson and Whang 1990), and a priority—and

time—dependent pricing scheme should be used :

[ wAPAT N (ATuAE AF A
plt)=t tm o
i1y

— E A
e Sy s B W N o

2(& yA : ;
+~(2 -——:ﬁ;)(KJm and Mannino 2003).
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In the subsequent discussion, we assume that
time-dependent p}(t) and p,(t)are always em-
ployed to focus on transitional issues around the

two equilibria A* and A".

3. Fundamental Transition
Theorems

This section summarizes a few theoretical re-
sults supporting prioritization of network services.
The first theorem rephrases what Mitrani (1998)
found : if the network moves from a non-priority
M/G/1 to a nonpreemptive M/G/1, the total de-
lay cost of the nonpreemptive M/G/1, given the
fixed arrival rate vector, will be less than that

of the non-priority.

Theorem 1 (Delay Costs)

Given a fixed arrival rate vector (\;, = Ay),

the transition from non-priority M/G/1 to non-
preemptive priority M/G/1 results in a lower to-
tal delay cost. In other words,

N N
Zkﬂ Uk)‘kSJE(ﬁ) <Za~1 vk’\kSTli(é)'

The theorem indicates that the net system val-

uve will increase after the transition because
N
o) -5, ST ")

N
< V(A*)—EH uMST(AT)

imfx {V(A)_E;w_l UA/\ASQ(A)}

N
= VAP) = 3o\ ST, (AY) | the first ‘< is due to
k=1

the theorem, the second ‘<" by definition, and the
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third ‘<’ due to the fact that A" solves the net

value maximizing problem. Therefore the fol-

lowing corollary holds.

Corollary 1 : (Increased Net System Value)

The transition from nonpreemptive non-pri-
ority M/G/1 to nonpreemptive M/G/1 will result
in the increased net system value.

Note that the individual users are assumed to
be rational and they make their decisions based
on the price and delay cost experienced in the
network. The key question is whether the sum
of price and delay cost (viz. full price or so—called
social marginal cost) will increase after the tran-
sition because net value maximizing may make
some of them worse off. In the context of net-
work neutrality, would any of Internet services
be negatively affected after the transition? The
next theorem, whose proof is too tedious and
omitted here (but can be secured by asking au-—

thors), tries to answer the question qualitatively.

Theorem 2 : (Full Prices)

For a fixed traffic )\, the sum of price and
sojourn time cost of nonpreemptive M/G/1 is
less than that of non-priority M/G/1. In other
words, aTCHA)/a\, <aTC(M)/a), for i=1, -, N

Theorem 2 simply says, by turning to the pri-
oritized system, the network operator can de-
crease the full price of individual users as long
as the arrival rate vector remains unchanged.
However we cannot assume that the arrival rate
vector does so after the transition as the follow—

ing example illustrates.

Example 1:

Consider a system that has two classes with

oV, (A )/ox, =9—20A, on A\ €[0, 0.45], and 8V, (),)/
ax, =12—30%, on NED, 04]. Let v, =2, v, =1,
¢ =01, ¢, =2, ¢¥ =2¢, and & =2¢ respectively,
indicating that the class—-1 users are more
sensitive to delays. By solving the two first order

conditions

N
aV.(A) /o, =0, STHA) + ZH v ABSTHA)/8x,  and

. (2)
R VIARGS VA Ay
aV(A)/ ox, = v ST, (A)+ R
% T () Zl\»:l 28, 15 5, 15,1
~ vedy  vedy
S T,
- D g k17

respectively, we obtain A+ = (0.3754, 0.1110) and
AE = (03718, 0.1517).

A serious problem with the transition in the
example is that class—1 users’ optimal price in-
creases from 0.082 to 0.096 while that of class—2
users decreases from 6.06 to 4.49. Worse yet,
class-1 users are worse off (their full price in-
creases from 1.492 to 1.565) while class-2 users’
full price (defined as the sum of access charge
and sojourn time cost) reduces from 8.669 to
7.449. The public will notice that the transition
favors class~2 users over class-1. In short, the

transition is not Pareto-improving.

4. The Model for the Transition
Problem

In this section, we describe a thought process
for obtaining an exact solution incorporating the
two externalities caused by delays and Pareto-
improving constraints hefore we move to the en-
suing approximation method. In order to deal
with the transition discriminating against class—1
users, we might want to add constraints that
guarantee the same or lower level of full price

to class-1 users after the transition. To general-



92 A4A - S1HE - A

ize the problem, suppose that class—i users are
worse off after the transition. Initially, we can
consider a constraint guaranteeing that class-i
users will have the same or lower level of full

price after the transition as follows :

4,574 (A 2

The problem can be rewritten as a Lagrangean
problem with a multiplier vector ¢=(8,, - 8,) :

%" (Vo) Te)-
ST

‘ Zi UALOST)(AF)/0A,)

’ BIU(A)/B)\.~U.ST1.()\+)»
J

If Av=2"=(, = %) and 8°=(89, -~ 6%)

solve the problem, the necessary conditions are

N
VN =48 (1) +Zk“1vk,/\z(95’if; (A)/ax,

and
N
+ Ek: 19;;52 TOX®)/oM,0%,

BTC(A) /o, —v,8T (A ™)
A N ool + =0
~Zk BAOSTLAY) o),

for i=1, -, N respectively.

Unfortunately (A%, ¢°) may not lead to a Pare-
to-improving state. Re-solving the system de-
scribed in Example 1 with the newly introduced
(0.375,
0.144) and class-1 users’ full price is 1.506, still
greater than 1.492, the class-1 full price before

constraints above, we obtain (3%, X5) =

the transition. This seemingly perplexing result
can be explained by carefully examining the new
constraints : class—i users are affected by the in-
teractions not only through priority queues but

also through the new constraints mandating sta-

UASTLA ) o), = 0TC(N)/ o),

tus quo before the transition. The network oper-
ator needs to internalize the rippling effects by
integrating the interactions into the existing de-
lay costs.

In order to derive the system cost rigorously,
let RTC()) denote the revised total system cost
for the system, incorporating the total delay cost
and the Pareto-improving constraints. Concep-
tually, with the revised total costR7T((}), the
marginal total cost caused by a class-i user en—
tering the network would be aRTC(A)/e), and the

transition is Pareto-improving if

N
ARTCN) 8N, <v,STHAT I+ Ek* iv,cx,:asz";,(y)/a/\i.

Combining the Pareto-improving constraints with
appropriate Lagrangean multipliers, we write the
revised total cost in a recursive form (ie., differ-

ential equation) :

N
RIC) =3 uMST()

1 +

+E O(oRTCN)/ A= v, STI(A")
N .

-—Zk lu,CA;aSTk‘Q\*)/aAj

The first summation represents the total delay
cost and the second the Pareto-improving con-
straint weighted by the Lagrangean multiplier
vector 0=1(8,, - 6,). Of course, § will be de-
termined dfter we solve the net system value

maximizing problem

~

AW RTC(/_\)} where

N
RTC(A) = Zk: 1%’\k:57;c oy

+3" B,(aRTC(N) /o~ v, ST (1)) for A =0
j=1" .
> ; v\ 0STE(A ) o))

6, >0, If (A% ") solves the net value max-
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imizing problem, the initial condition for the dif-

ferential equations for the revised total cost will

be RTCO) =30 0 NST (1) owing to the Kuhn-

Tucker’s complimentary slackness conditions.
However, the system of differential equations is
intractable. As such, we propose a heuristic de—
livering the same or lower level of full prices
across all classes; if class—i users suffer from the
transition, add 4; to the post-transition full price,
aTCN)/8);, so that

uiSTJ(yHE umasrc( V/ox, = aTC(N)/ox+ 4,

and 6,(v,STH A E
—aTC()) /aA,f )=

oAl aSTL( /oA,

The intuition behind the heuristic is simple :
considering that the additional constraints are
extra cost, we simply add 4, to the total delay
cost to internalize the cost of Pareto-improving
constraints. In other words, the problem is re-
formulated as

5

k=1

N N

VilA,) — Ekr: PASTLA)

max N

IWEEDS 10,aTC(A)/a,\ﬁA/«-U,ST/'(A*) Sy
=

N
-¥ pAEaSTI(A ") o,

If (A", ¢") is the solution to (1), the Kuhn-

Tucker necessary conditions are

V(A )=vST(A7) E

’U )\ BST )/8)\

+3 v 19;82 TC(A")/axpx, and the supplementary
1=

conditions are

g (aTC( Vor + A —v STHAT)

*E BAOSTIAT) /o) =0 And the optimal

price for class—i users is

pi(A*)*Z; BN ST, (A" )6,

+ E;: 0,0 TO ) [a\00,

I A" and ¢~ are solution vectors for the neces-
sary conditions, we check whether Pareto-im-
proving constraints are met. If the constraints
are not met, we repeatedly adjust A={(4,, -, A,)
until the constraints are satisfied. The genetic al-
gorithm discussed later seeks for acceptable
A=(A, ~ A, as illustrated in the next ex-

ample.

Example 2 :

Suppose we solve the identical problem in
Example 1 with the Pareto-improving constr-
aints added. Because class—1 users get worse off
after prioritization, we assume that 6, >0 and
9, >0. For different values of 4,, we can calcu-
late X, A, and ¢, to ensure improved net system
values and lowered full prices.

One last issue is about the incentive-compati-

{Table 1> Pareto-improving transitions for different 4, values

A, (O Ay 6)) Net System Value Full Price Revenue
0.08 (0.378,0.135,0.094) 2437 {1.440,7.851) 0.735
0.09 (0.378,0.134,0.099) 2436 (1.431,7.334) 0.735
0.10 (0.379,0.1330.106) 243 (1.423,7917) 0.735
Non Priority (M. Ay = (0375,0111) 2298 (1.492,8.669) 0.704
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bility of the solution because the optimal price
also needs to be incentive-compatible. As we
noted, the 6, terms are numerically determined
dfter solving the necessary conditions and the
incentive compatibility should be checked on at
that point. For that purpose, let us define the
cheating penalty function II'(j), representing the
extra cost that a class—i user should bear when
selecting class~7 priority over class~{ priority, as
below (Mendelson and Whang 1990).

1) = Elp, (O] +0,(STy (A7) — ¢+ ¢) ~ Blp;(8)] - v,ST,(27)
(v)\/l X (va;\)&k

ANV
.S*V s? SSE 5,82

Ay .
-+ 0,2 TC{A)/ )01
uw;fz WTCoA0N

Where and

Elp;(t)] calculates the expected price that a

class—i user will pay when she joins class—/.

Using the cheating penalty values, we can test
the incentive-compatibility of optimal prices
dfter reaching a Pareto-improving state A~
{ex ante). As an illustration, <Table 2> lists
(@), IEQ1)) for different A,’s satisfying the in-
centive-compatibility. Compounded by the search
process with the incentive compatibility con-
ditions, the acceptable range of A, values is ex-
pected to reduce.

5. Genetic Algorithm and
Simulation Study

As we noted in the previous section, finding
an acceptable 4 can be viewed as a search pro-
blem. In this section, we compare the quality of
solutions with simple random selection of A4,
{i=1, - N) values to that of systematic se-
lection using a genetic algorithm. Before pre-

senting the results of a simulation study to eval-

(Table 2> Cheating Penalties for Selected 4, Values

4, (I(2), 0X1)) | Net Value | Full Prices
0.00 0922, 0510 2.442 (1.498,7.720)
0.08 (1.281, 0.032) 2437 {(1.490,7.753)
0.09 (1.325,-0.027) 2436 {1.48,7.785)
0.10 (1.459,-0.204) 2435 (1.473,7.818)

uate the quality of solutions, we briefly describe
the genetic algorithm.

5.1 Genetic Algorithm

For the underlying objective function of the
problem, we decided to use a vector 4,=(=1,
-, N} as the problem representation where A,=0
if class~i is better off and 4,>0 otherwise. For
an N-class problem with V' {~¥>N’") worse-off
classes due to prioritization, the genetic algo-
rithm contains a string of ~ base 10 genes.

We devised three fitness functions to experi-
ment with the interaction between the system
objective and constraint satisfaction. Solving
constrained optimization problems can be a chal-
lenge for genetic algorithms. Generating con-
straint-satisfying solutions is often easier than
solving a constrained optimization problem be-
cause there is no simple way to design a fitness
function with two disparate measures (objective
function and constraint satisfaction). Thus, we
use constraint satisfaction for the first fitness

function as shown as below where SMC' and
SMC! represent the social marginal costs (ie, the

sum of delay cost and price) of class-i before and
after the transition.

s=%" pway’ ¥ "
= §= i=

_AG/NN=-1)



2= 1 if class- is better off

= (SMG'—SMC")/SMCG otherwise
if 1'G)=0

= (| MncP| =111 ()))/1MnCP| otherwise

The constraint satisfaction (CS) fitness func-
tion is the average satisfaction of the Pareto~im
proving constraints and the incentive-compati-
bility constraints. 7'(j) is the cheating penalty
when class i users switch to class j and MinCP
is the minimum cheating penalty in the current
generation, The term (SMC — SMC)/SMG' indi-
cates the relative degree of welfare loss due to
the transition where SMC' and SMC represent
the full prices before and after the transition. The
number of constraints is the sum of the number
of Pareto-improving (PI) constraints (N') plus
the number of incentive-compatibility (IC) con-
straints N(N-1). Thus, the CS function ranges
from O to 1 indicating the average amount of
constraint satisfaction. The other two fitness
functions discount the objective {changes in ei-
ther net system value or revenue after the tran-
sition)” by the fraction of constraint satisfaction.
Essentially, the fraction of constraint satisfaction
provides a penalty to reduce the amount of the
ohjective. Combining net system value and rev-
enue in one fitness function is problematic be-
cause there is no obvious way to transform them
to a comparable scale.

The remaining parts of the genetic algorithm
are conventional (Goldberg 1989). We used mu-
tation and single point crossover as the genetic
operators. Both of these operators are applied to
the base 10 representation of population mem-

Jbers. We used roulette-wheel selection to select

members of the current generation for genetic

operations and actual implementation was coded
using Maple 10.

5.2 Simulations

The simulations used random problems cre-
ated by a sampling procedure. <Table 3> shows
the range of values for service times, waiting
costs, arrival rates, and coefficients of value
functions used by the sampling procedure, With—
out loss of generality, the sampling procedure
used value functions with derivatives of the form
V'(x)=4,—Bx (i =1, 2) and exponential service
time distributions.

{Table 3) Parameter Ranges for the Generated
Problems

0 to 265 002 03 f

A, B; ¢

0to 65

<Table 4> summarizes the generated problems
by the number of classes. In order to put the algo-
rithm in a more general setting, we extend the num-
ber of user classes from 2 to 4. We believe that it
would be sufficient to provide up to 4 classes for
differentiated Internet service for a couple of rea-
sons. First the marginal benefit going from a
non—priority system fo a system with more priority
classes will decline (Wilson 1989) and adding more
prioritized service classes only leads to marginal
revenue increase, which was observed in our simu-
lation result. Second, we cannot expect prioritized

services having more than 4 classes for all practical

1) Budget imbalance can be another consideration to
the system manager as were argued hy Dewan
and Mendelson1990) and Mendelson (1985).
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purposes. The Pareto Improving and Non Pareto
Improving columns demonstrate that most post
transition solutions are Pareto Improving although
the ratio declines considerably (121 : 1 for 2 classes
to 9 : 1 with 4 classes) with additional classes. This
situation could be due to the increasing chance of
having non-Pareto-improving classes with addi-
tional classes. To provide adequate test cases for
the genetic algorithm, the Pareto Improving column
includes Non Pareto Improving problems in which
each worse-off class pays full price at least 1% more
than before the prioritization. This threshold had a
marginal impact on the results because there were
only a few problems affected by the threshold, The
Infeasible and Non Converging columns demon-
strate the difficulty of solving this non-linear opti-
mization problem. The Infeasible colurmn means that
the resulting solution had a negative value or its us—
age rate is greater than one. Negative values often
mean that the resulting classes can be different after
the transition because some classes are eliminated
by the transition. In other words, we did not count
the class dominance cases as was reported by
Balachandran and Radhakrishnan (1994). The Non
Converging column contains the number of prob-
lems in which the Maple 10 Solver failed to find a
solution satisfying non-negativity and first order
conditions for (1). Non-convergence was a sig—
nificant problem in both the sampling procedure and
the simulation.

Table 4> Summary of Generated Problems

Classes Par eto Non P areto Infeasi Non
Improving Improving  ble Converging

2 A 200 L1299 4138

3 58 0 245 3083

4 1,976 200 62 2,010

Each simulation compared the genetic algo-
rithm to random search using the generated non
Pareto-improving problems as input. The pa-
rameters used in the genetic algorithm <Table
5> are consistent with values used in other stud-
ies of constrained optimization problems (Gold-
berg 1989; Michalewicz 1996). In the random
search, the heuristic objective function was used
along with A values randomly generated in a
range determined by the gap between the two
full prices (social marginal costs) of class—i users
after and before the transition. The genetic algo-
rithm used these randomly generated solutions
as its initial population. The genetic algorithm
was executed for each combination of a number
of classes and a fitness function.

{Table 5) Parameters for the Genetic Algorithm

Population Crossover Mutation Number of
Size Rate Rate Generations
10 06 01 40

The simulations demonstrated that the genetic
algorithm provided only modest improvement
over random search as shown in <Table 6> to
<Table 8>. The hypothesis involves the per-
centage improvement of the best solution in 40
generations (i.e., terminal values) compared to
the best solution in the initial population. In the
fitness function columns, NSV represents the net
system value while CS represents the constraint
satisfaction (2). Each result column in Tables 6
to § contains less than 200 observations because
of convergence problems when solving the Kuhn-
Tucker conditions for the optimization problem
(1). Although each hypothesis test strongly sup-
ports rejection of the null hypothesis, the sample
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{Table 6> Two Class Results of the Hypothesis HO : % Improvement < 0

Fitness Function

7 Test of Hypothesis for the Mean NSV (S Revenue * CS S

Somple Standard Deviation 0019424754 0.01607145 0012815831
Sample Size 193 191 18
Sample Mean 0.005983098 0.00821336 0.003351304
Standard Error of the Mean 0.001398224 0.001162839 0.000934634
Z Test Statistic 4279068819 7062891041 4120389419
Upper Critical Value (0.05 level) 1.644853 1.644853 1.644853
p-Vdlue 9.39038E-06 B.20788E-13 1.8R22E-(05

(Table 7> Three Class Results of the Hypothesis HO : % Improvement < 0

Fitness Function

Z Test of Hypothesis for the Mean NSV (S Revenue * CS S

Sample Standard Deviation 0039337018 0.0355581 0.0223365%4
Sample Size 149 184 160
Sample Mean 0011099327 0015391666 0.009295907
Standard Error of the Mean 0.003222614 0.002621378 0.001765894
Z Test Statistic 3444199977 5871593718 526413528
Upper Critical Value (0.05 level) 1.644853 1644853 1.644853
p-Value 0.000286424 2.16519E-09 7.05677E-08

(Table 8> Four Class Resutts of the Hypothesis HO : % Improvement < Q

Fitness Function

Z Test of Hypothesis for the Mean NSV (S Revenue « CS S

Sample Standard Deviation 0.01160783% 0.045513433 0.007981083
Sample Size 147 158 145
Sample Mean 0.00601849% 0009326635 0.00441466
Standard Error of the Mean 0000057403 0.003620854 0.0006627%4
Z Test Statistic 5.241779%25 2575810592 6660684623
Upper Critical Value (0.05 level) 1.644853 1.644353 1.644853
p-Value 7.96752E-08 0.0030003 1.37015E-11

means are rather small. In most cases, the mean
percentage improvement is less than 1%. 7 tests
for one-sided tests with z of 0.1 were accepted
with p values of 1 for all cases.

The marginal contribution of the genetic algo-

rithm may be explained by the small size of the
transition externality compared to the total delay
costs. Across all results, the average ratio of the
difference of the total delay costs minus the tran-

sition externality to the total delay costs was
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more than 0.90. If random search typically finds
some improvement to reduce the transition ex-
ternality, the genetic algorithm may not have
enough flexibility for much additional improve-
ment.

Another problem that may hinder the genetic
algorithm is the diversity in the initial population.
A more diverse initial population may provide
more flexibility for the genetic algorithm. Howe-~
ver, generating a more diverse initial population
may significantly slow the optimization process
due to weak convergence problem with Maple
Solver. We are somewhat pessimistic on im-
proving the genetic algorithm in this manner be-
cause the balance between convergence and di-
versity may be a harder {problem than the origi~
nal optimization problem.

6. Concluding Remarks

In this paper, we propose a solution for a net-
work operator who, faced with unregulated gro-
wth in Internet traffic, may have to control his
networks by offering prioritized services. Our
proposal is based on a multi-class M/G/1 model
that could serve as a good approximation of the
network operator’s already complex networks.
Despite that previous studies in queueing con-
gestion problems have demonstrated the benefits
of prioritized queues, few of them have tried to
analyze the change from the individual users’ and
system’ perspectives. We showed welfare impact
of prioritization on net system value and shifts
in full prices and developed a model as well as
a solution technique attaining Pareto-improving,
optimal, and incentive-compatible states. Given
the multiple constraints, we found that the exact
solution is intractable and thus decided to resort

to an approximate solution that can simulta-
neously satisfy the constraints while reaching an
optimal state (out of many). Through simulation,
we study the how constraints are satisfied under
range of parameter values with approximate
solutions. Although it could be deemed that the
marginal improvement could be negligible as is
iltustrated in Example 2, we conclude that priori-
tization is more than a worthwhile effort, partic-
ularly for network operators whose revenue of-
ten runs in the amount of multi-billion dollars
because even a fraction of billions still matters
a lot.

There could be a number of future directions
of the current study. Admittedly, the monopolist
assumption offers just a baseline. As such, it
would be interesting to extend our analysis into
a more competitive market. What if other oper—
ators follow the suit? A more complex analysis
would be needed to look into issues such as sta-
bility or sustainability of equilibrium under such
conditions.” For another, ‘fhe assumption as to
maximizing th? net system value is too altruistic
to be viewed as realistic and therefore the oper—
ator may seek for a solution favoring revenue in-
crease in line with the recent interest in vield
management. Of course, the lack of job class in-
formation may prevent a carrier from deploying
the pricing models presented in this paper.
However, with switching technologies enabling
such prioritization at hands, the network carrier
can try to improve its internal operation by try-
ing and learning from the solution steps pre-
sented in this paper. The new challenges posed
by VoIP, IPTV, Web 2.0 and P2P should give
ample impetus to the network carrier who would

like to improve its services.
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