• 제목/요약/키워드: Lysophosphatidic Acid (LPA)

검색결과 56건 처리시간 0.029초

Promising Pharmacological Directions in the World of Lysophosphatidic Acid Signaling

  • Stoddard, Nicole C.;Chun, Jerold
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Lysophosphatidic acid (LPA) is a signaling lipid that binds to six known lysophosphatidic acid receptors (LPARs), named $LPA_1-LPA_6$. These receptors initiate signaling cascades relevant to development, maintenance, and healing processes throughout the body. The diversity and specificity of LPA signaling, especially in relation to cancer and autoimmune disorders, makes LPA receptor modulation an attractive target for drug development. Several LPAR-specific analogues and small molecules have been synthesized and are efficacious in attenuating pathology in disease models. To date, at least three compounds have passed phase I and phase II clinical trials for idiopathic pulmonary fibrosis and systemic sclerosis. This review focuses on the promising therapeutic directions emerging in LPA signaling toward ameliorating several diseases, including cancer, fibrosis, arthritis, hydrocephalus, and traumatic injury.

Lysophosphatidic Acid Inhibits Nitric Oxide-induced Apoptosis via p70S6kinase Pathway in Rabbit Articular Chondrocytes

  • ;김송자
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.349-353
    • /
    • 2009
  • Lysophosphatidic Acid (LPA) is a bioactive lysophospholipid that is a potent signaling molecule able to provoke a variety of cellular responses in many cell types such as differentiation, inflammation and apoptosis. In this study, we have investigated the effect of LPA on Nitric oxide (NO)-induced apoptosis in rabbit articular chondrocytes. LPA dramatically reduced NO induced apoptosis of chondrocytes determined by phase contrast microscope and MTT assay. When chondrocytes alone treated with LPA, LPA induced phosphorylation of p70S6kinase, a serine/threonine kinase that acts downstream of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphoinositide-dependent kinase-1 (PDK-1) in the PI3 kinase pathway, dose-dependently detected by Western blot analysis. Phosphorylation of p70S6k with LPA was reduced expression of p53 in NO-induced apoptosis of chondrocytes. Also, inhibition of p70S6kinase with rapamycin was enhanced expression of p53 in chondrocytes. Our findings collectively suggest that LPA regulates NO induced apoptosis through p70S6kinase pathway in rabbit articular chondrocytes.

  • PDF

Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses

  • Supriya Tiwari;Nikita Basnet;Ji Woong Choi
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.319-328
    • /
    • 2024
  • Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.

Application of in Utero Electroporation of G-Protein Coupled Receptor (GPCR) Genes, for Subcellular Localization of Hardly Identifiable GPCR in Mouse Cerebral Cortex

  • Kim, Nam-Ho;Kim, Seunghyuk;Hong, Jae Seung;Jeon, Sung Ho;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.554-561
    • /
    • 2014
  • Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors ($LPA_1-LPA_6$). $LPA_1$, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of $LPA_1$ in neuronal migration has not yet been fully elucidated. Here, we delivered $LPA_1$ to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of $LPA_1$. Moreover, these results can be applied to the identification of the localization of $LPA_1$. The subcellular localization of $LPA_1$ was endogenously present in the perinuclear area, and overexpressed $LPA_1$ was located in the plasma membrane. Furthermore, $LPA_1$ in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of $LPA_1$ did not affect neuronal migration, and the protein expression of $LPA_1$ was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of $LPA_1$ in brain development and on the technical advantages of in utero electroporation.

Lysophosphatidic acid enhances breast cancer cells-mediated osteoclastogenesis

  • Nam, Ju-Suk;Sharma, Ashish Ranjan;Nguyen, Lich Thi;Jagga, Supriya;Lee, Yeon-Hee;Sharma, Garima;Lee, Sang-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.503-511
    • /
    • 2018
  • Lysophosphatidic acid (LPA) is known to play a critical role in breast cancer metastasis to bone. In this study, we tried to investigate any role of LPA in the regulation of osteoclastogenic cytokines from breast cancer cells and the possibility of these secretory factors in affecting osteoclastogenesis. Effect of secreted cytokines on osteoclastogenesis was analyzed by treating conditioned media from LPA-stimulated breast cancer cells to differentiating osteoclasts. Result demonstrated that IL-8 and IL-11 expression were upregulated in LPA-treated MDA-MB-231 cells. IL-8 was induced in both MDA-MB-231 and MDA-MB-468, however, IL-11 was induced only in MDA-MB-231, suggesting differential LPARs participation in the expression of these cytokines. Expression of IL-8 but not IL-11 was suppressed by inhibitors of PI3K, NF-kB, ROCK and PKC pathways. In the case of PKC activation, it was observed that $PKC{\delta}$ and $PKC{\mu}$ might regulate LPA-induced expression of IL-11 and IL-8, respectively, by using specific PKC subtype inhibitors. Finally, conditioned Medium from LPA-stimulated breast cancer cells induced osteoclastogenesis. In conclusion, LPA induced the expression of osteolytic cytokines (IL-8 and IL-11) in breast cancer cells by involving different LPA receptors. Enhanced expression of IL-8 by LPA may be via ROCK, PKCu, PI3K, and NFkB signaling pathways, while enhanced expression of IL-11 might involve $PKC{\delta}$ signaling pathway. LPA has the ability to enhance breast cancer cells-mediated osteoclastogenesis by inducing the secretion of cytokines such as IL-8 and IL-11.

Lysophosphatidic acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Sohn, Uy-Dong;Park, Kyoung-Chan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.96.1-96.1
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we were surprised to find that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. (omitted)

  • PDF

Role of TAZ in Lysophosphatidic Acid-Induced Migration and Proliferation of Human Adipose-Derived Mesenchymal Stem Cells

  • Mo, Won Min;Kwon, Yang Woo;Jang, Il Ho;Choi, Eun Jung;Kwon, Sang Mo;Kim, Jae Ho
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.354-361
    • /
    • 2017
  • Transcriptional co-activator with a PDZ-binding motif (TAZ) is an important factor in lysophosphatidic acid (LPA)-induced promotion of migration and proliferation of human mesenchymal stem cells (MSCs). The expression of TAZ significantly increased at 6 h after LPA treatment, and TAZ knockdown inhibited the LPA-induced migration and proliferation of MSCs. In addition, embryonic fibroblasts from TAZ knockout mice exhibited the reduction in LPA-induced migration and proliferation. The LPA1 receptor inhibitor Ki16425 blocked LPA responses in MSCs. Although TAZ knockdown or knockout did not reduce LPA-induced phosphorylation of ERK and AKT, the MEK inhibitor U0126 or the ROCK inhibitor Y27632 blocked LPA-induced TAZ expression along with the reduction in the proliferation and migration of MSCs. Our data suggest that TAZ is an important mediator of LPA signaling in MSCs in the downstream of MEK and ROCK signaling.

Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells

  • Lee, Jung-Min;Park, Soo-Jin;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.194-201
    • /
    • 2017
  • Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular $Ca^{2+}$ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with $LPA_1$ antagonists showed LPE induced intracellular $Ca^{2+}$ increases in an $LPA_1$ GPCR-dependent manner. Furthermore, LPE increased intracellular $Ca^{2+}$ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive $IP_3$ receptors, $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores, and subsequent $Ca^{2+}$ influx across plasma membranes, and LPA acted on $LPA_1$ and $LPA_2$ receptors to induce $Ca^{2+}$ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.

Taguchi's Robust Design Method for Optimization of Lysophosphatidic Acid Production in an Open Reactor System

  • Han, Jeong-Jun;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권1호
    • /
    • pp.81-88
    • /
    • 1998
  • The determination of appropriate parameters and parameter conditions is very important for the optimization of production of target materials. Taguchi's method has been used widely as the basis for development trials and optimization during industrial process design. Reaction variables which influence product yield are easily determined and their effects are revealed by just a few reactions, negating the need for extensive experimental investigation. There are usually some factors that are responsible for variations in process characteristics, so called noise factors. Controlling noise factors is very costly and difficult or impossible. Taguchi's experimental design method was examined to determine the control factor's level that is less sensitive to the changes in environmental conditions and other noise factors without control of noise factors. In this study, optimization of lipase-catalyzed production of lysophosphatidic acid (LPA) which has various physiological functions was performed by Taguchi's method. We obtained LPA yields ($66.5\%$) with low variance (5.32) at 400 RPM, molar ratio of 40 : 3 (mol) (fatty acid: G-3-P), 48 h, and $50^{\circ}C$. Thus, bioactive LPA with a desired fatty acid moiety could be produced with high yields and low variance despite various environmental noise factors.

  • PDF

Effects of High Dose Lysophosphatidic Acid Supplement during IVC on Preimplantation Development of Porcine Embryos

  • Jin, Minghui;Yu, Il-Jeoung;Jeon, Yubyeol
    • 한국수정란이식학회지
    • /
    • 제32권4호
    • /
    • pp.275-285
    • /
    • 2017
  • Lysophosphatidic acid (LPA) is an important signaling molecule. Here, the effect and mechanism of LPA on the preimplantation development of porcine embryos during in vitro culture (IVC) was examined. Porcine embryos were cultured in porcine zygote medium (PZM-3) supplemented with $30{\mu}M$ LPA during different days. There was a significantly higher cleavage rate in Day 1-7 and significantly higher total cell number of blastocysts in Day 1-3 and Day 4-7. It was also found that messenger RNA (mRNA) expression level of PCNA, BCL2 and BAX in blastocysts obtained from D1-7 group were significantly higher and BCL2/BAX mRNA ratio in D1-3 group was significantly lower than control group but Day 4-7 and Day 1-7 groups were comparable with control group. Treatment with $20{\mu}M$ PLC inhibitor significantly decreased the embryo cleavage rate and blastocyst formation rate. Moreover, LPA as an activator of PLCs, enhanced the $30{\mu}M$ LPA + $20{\mu}M$ U73122 group embryo cleavage rate which similar with control group. In conclusion, the results suggest that treatment with LPA during IVC improves the porcine early embryo cleavage by activation of PLC signaling pathway and regulate the mRNA expression that contribute to total cell number of blastocysts during blastocyst formation.