• Title/Summary/Keyword: Lycopersicum esculentum Mill

Search Result 11, Processing Time 0.028 seconds

Effect of Day/Night Temperatures during seedling culture on the Growth and Nodes of Early Flower Cluster Set of 'Seokwang' Tomato (Lycopersicum esculentum Mill.) (육묘시의 주야간 기온이 서광 토마토의 생육 및 초기 착화 절위에 미치는 영향)

  • 김오임;정병룡
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.04a
    • /
    • pp.75-78
    • /
    • 1999
  • 토마토의 육묘시에 화아분화에 미치는 제요인의 영향에 대한 정확한 정보는 미흡하다. 흔히 육묘 중인 토마토의 생식생장을 촉진하기 위해서는 질소비료의 공급량을 줄이고 야간기온을 낮추어 야냉육묘해야 한다고 알려져 있다. 그러나 공정육묘기술의 도입으로 인하여 다품목 소량생산을 위주로 하는 국내의 채소 육묘농가들이 다양한 종류의 묘를 하나의 온실에서 생산해야 하는 한계성을 가지고 있다. (중략)

  • PDF

Utilization of Earthworm Cast as a Component of Plant Growth Medium for Tomato (채소용 육묘 상토로서 지렁이분립의 이용)

  • 조익환;전하준;이주삼
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.1
    • /
    • pp.55-66
    • /
    • 2003
  • This study was carried out to investigate the effects of different plant growth media on the growth of tomato(Lycopersicum esculentum Mill.) seedlings during growth stages. The media were commercial plant growth medium 100%, earthworm cast (that was produced by vermicomposting of food waste and cattle manure) 100%, earthworm cast 50% + vermiculite 50%, earthworm cast 50% + perlite 50%, earthworm cast 40% + vermiculite 30% + perlite 30%. Plant length(mm), number of leaves, leaf area($\textrm{cm}^2$), stem diameter(mm), plant dry mater were greatest till the 2nd week growth stages in the commercial plant growth medium plots, but those were higher in the earthworm cast than those in the other plant growth media at the later stages of this study(P<0.05). And relative growth rate of biological yield, relative growth rate of shoot and relative growth rate of root were highest in the earthworm cast till the 4th week growth stage. Therefore it can be implied that there is the possibility of potential utilization of earthworm cast, which was produced by vermicomposting of food waste and cattle manure, as vegetable growth medium.

  • PDF

Growth pf Plug Seedlings of Capsicum annuum and Lycopersicum esculentum as Affected by the Mixing Ratio of Aquafarm Waste Water Sludge in the Growing Medium (담수양어장 슬러지의 배지내 혼합비율이 고추(Capsicum annuum)와 토마토(Lycopersicum esculentum) 공정묘의 생장에 미치는 영향)

  • Lee, Eun-Ju;Hwang, Seung-Jae;Kim, Ik-Joon;Park, Young-Hoon;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.184-189
    • /
    • 2003
  • This research was conducted to determine the effect of mixing ratio of aquafarm waste water sludge (AWWS) in the growing medium as a source of fertilizers on growth of plug seedlings of pepper (Capsicum annuum L.) and tomato (Lycopersicum esculentum Mill.). Increased mixing ratio of AWWS resulted in increased fresh and dry weights, leaf area, plant height, and total chlorophyll content, although there were slight differences in growth characteristics at 20 and 40 days after sowing. Concentration of AWWS affected insignificantly the percent dry matter, number of leaves, and length of the longest root. The addition of AWWS increased pH and decreased EC in the medium as compared to that of chemical fertilizer. Compared to the control of a liquid fertilizer, 4 or 8 kg AWWS${\cdot}45L^{-1}$ medium (Sludge 4) gave a similar or slightly better growth. Above results suggested that addition of about 4 kg AWWS${\cdot}45L^{-1}$medium is sufficient for seedling growth and the AWWS can be used as a substitute for the liquid fertilizer in plug seedling production.

Effects of Compost Leachate and Concentrated Slurry on the Growth and Yield of Tomato(Lycopersicum esculentum Mill.) in Hydroponic Culture (퇴비단 여과액비와 농축액비를 이용한 양액재배가 토마토(Lycopersicum esculentum Mill.)의 생육 및 수량에 미치는 영향)

  • Ryoo, Jong-Won;Seo, Woon-Kab
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.3
    • /
    • pp.357-370
    • /
    • 2009
  • This experiment was conducted to investigate the effects of compost leachate and concentrated slurry on growth of tomato in hydroponic culture. In process of composting, compost leachate was produced water was through a saturated compost heap. The concentrated slurry was produced by filtration and concentration by membrane process. Filtration of pig slurry was necessary to prevent the hose clogging in hydroponics culture. The treatments of this experiment were consisted of seven different liquid fertilizers; compost leachate(CL), concentrated pig slurry (CS), compost leachate+byproduct(CL+BP), concentrated pig slurry+byproduct(CS+BP), compost leachate 50%+nutrient solution50%(CL+NS), concentrated pig slurry 50%+nutrient solution50%(CS+NS) and nutrient solution(NS) for tomato based on nitrogen content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of tomato. The concentration of nutrient solution was adjusted a range of $1.6{\sim}2.0 mS/cm$ in EC. 1. The compost leachate and concentrated pig slurry were low in phosphorus(P), calcium(Ca), magnesium(Mg), but rich in potassium(K). 2. Plant height, SPAD value of tomato was highest in the plot of CS+NS, intermediate in CL, CS+BP, and lowest in 100% concentrated pig slurry. 3. The tomato yield of compost leachate plot was 91% compared with inorganic nutrient solution. The compost leachate solution could be used as a nutrition solution of tomato in organic hydroponics. 4. The growth including plant height, SPAD value, fruit number, fruit weight and yield of tomato in the CL 50%+NS 50% was similar in the control. In conclusion, the mixture solution of 50% pig slurry and 50% nutrient solution could be used as a nutrition solution of tomato hydroponic culture.

  • PDF

Effects of Zinc, Phosphorus and Iron on the Cadmium Uptake and Accumulation by Hydroponically Grown Tomato (수경 재배된 도마도(Lycopersicum esculentum Mill)에 의한 Cd의 흡수, 축적과 이에 미치는 Zn, Fe 및 인산의 효과)

  • Kim, M.J.;Motto, H.L.
    • Applied Biological Chemistry
    • /
    • v.21 no.1
    • /
    • pp.40-50
    • /
    • 1978
  • Effects of Zn, P and Fe on Cd uptake and accumulations by tomato (Lycopersicum esculentum Mill) and also their interactions on the uptake of Zn, Fe, Mn, P and Cd were investigated using batch type solution culture technique. Experiment 1 was a factorial scheme with 3 levels of Zn (0, 0.5, 2.5 ppm) and 3 levels of Cd (0, 0.2, 1.0 ppm). At 1.0 ppm Cd, significant yield reduction of dry matter and visual toxicity symptoms (yellowing and necrosis) of Cd was observed for all zinc levels. At this Cd level, increasing Zn treatment from 0 to 2.5 ppm increased Cd concentration from 199 to 235 ppm in leaves and from 124 to 145 ppm in stems. Similarly, Cd treatment did not suppress Zn uptake in leaves, and rather significantly increased in stems. Fe concentrations in leaves and stems were significantly reduced due to Cd treatment while Mn were increased by both Zn and Cd treatment. The results of experiment 2 with 3 levels of P (0.5, 2.0, 4.0m Mol) and 3 levels of Cd (0, 1.0, 2.0 ppm) in a factorial scheme also showed a growth reduction and visual toxic symptons from 1.0 ppm Cd level. Increasing P treatment tend to increase Cd concentrations in leaves and stems although it was not statistically significant. Increasing P concentration due to Cd treatment could be the 'concentration' effect as a result of reduced growth, while there was significant decrease in Fe concentration due to Cd treatment in spite of possible 'concentration' effect. Mn concentration was increased at 1.0 ppm Cd level and then dropped at 2.0 ppm Cd level. Zu concentration in leaves and stems showed significant increase as Cd treatment increased as observed in experiment 1. Experiment 3 had 3 levels of Fe (0.5, 1.0, 2.0 ppm) and 3 levels of Cd (0, 0.8, 1.6 ppm) treatments in a factorial design. Significant growth reduction and visual toxic symptoms as observed in experiment 1 and 2 were also observed from 0.8 ppm Cd level. Increasing Fe treatment obviously alleviated toxic symptoms, improved growth and significantly increased dry matter yield. At 0.8 ppm Cd treatment level, increasing Fe treatment from 0.5 to 2.0 ppm significantly decreased Cd concentration from 141 to 92 ppm in leaves and from 101 to 46 ppm in stems. At 1.6 ppm Cd treatment level the decrease was from 224 to 167 ppm in leaves and from 124 to 109 ppm in stems. As in the case of experiment 1 and 2, Fe concentration in leaves and stems were reduced as Cd treatment increased to 1.6 ppm at 0.5 and 1. 0 Fe treatment levels, whereas at 2.0 ppm Fe level, Cd treatment increased Fe concentration in leaves and stems showing significant interactions of Fe and Cd on Fe uptake. Cd effect on Zn and Mn showed similar results to experiment 1 and 2 and Fe treatments reduced Zn and Mn concentrations in plant tissue. The results of 3 experiments show that P and Zn did not manifest suppressive effect on Cd uptake, Fe significantly demonstrated it. Fe also alleviated Cd toxicity symptoms significantly in terms of visual symptoms and dry matter yield. Visual toxicity symptoms were definitely related to Fe status in plant tissue as well as possible physiological effect of Cd itself, and the results suggest that Fe requirement for normal growth increase as Cd element is present in plant tissue. Zn accumulated more in stems than in leaves whereas Cd, Fe and Mn showed the opposite trend in all experiments.

  • PDF

Effect of Nitrate Concentration in Culture Solution on the Growth and the Uptake of Inorganic Elements of Tomato Plants(Lycopersicum esculentum Mill) (배양액(培養液)의 질산태질소농도가 토마토(Lycopersicum esculentum Mill)의 생육 및 무기원소(無機元素) 흡수에 미치는 영향)

  • Lee, Kwang-Seek;Yu, Jing-Quan;Matsui, Yoshihisa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 1997
  • This experiment was carried out to investigate the effects of nitrate concentration in culture solution on the growth and the uptake of inorganic elements in Tomato plant in the greenhouse. Tomato plants(cv. TVR-2) were grown with nitrate concentrations 8, 16, 24, 32cmol/l, based on Japan ENSI standard solution. Dry weights of lamina and petiole increased with the nitrate concentration. However, the dry weight of fruit was the highest in the treatment of nitrate concentration of 16cmol/l. The proportion of dry weights of vegitative organ to reproductive organ was the lowest in the treatments of nitrate concentrations of 16cmol/l and it increased with the nitrate concentration. The fruit yield was the highest at the treatment of nitrate concentration of 16cmol/l. With the increase of nitrate level the concentrations of N, $NO_3-N$, Ca and Na increased in lamina and petioles. The concentrations of K, P, S and Cl tended to decline in the nitrate concentration of 16 and 32cmol/l. These results indicate that optimum nitrate concentrations in a tomato grown by hydroponics change with growth stage, and the optimum concentrations for vegitative and reproductive stage were 8 and 16cmol/l, respectively. It also was proved that the nitrate concentrations in the culture solution affected antagonistically the uptake of inorganic anion in tomato : In low nitrate level $Cl^-$ uptake was affected much, while $SO_4{^{2-}}$ and $H_2PO_4{^-}$ uptake were affected in high nitrate level.

  • PDF

Effect of Day/Night Temperatures during Seedling Culture on the Growth and Nodes of Early Flower Cluster Set of 'Seokwang' Tomato (Lycopersicum esculentum Mill.) (육묘시의 주야간 기온이 서광 토마토의 생육 및 초기 착화 절위에 미치는 영향)

  • 김오임;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • This study was carried out to examine the effect of day/nignt temperatures during seedling culture on the vegetative and reproductive growth of Lycopersicum esculentum ‘Seokwang’. The study was consisted of two culture stages, plug seedling production in the growth chamber and hydroponic culture of the plant in a glasshouse. Experiments were replicated over time. The germinated seedlings were raised for 33 days (experiment 1) and 35 days (experiment 2) in 4 growth chambers, each with day/night temperatures of either $25^{\circ}C$/$25^{\circ}C$, 16$^{\circ}C$/16$^{\circ}C$, 16$^{\circ}C$/$25^{\circ}C$ or $25^{\circ}C$/16$^{\circ}C$. Cool-white fluorescent lamps provided 140$\mu$mol.m$^{-2}$ .s$^{-1}$ light for 12h each day. In the second experiment, all chambers were supplied with 1000$\mu$mol.mol$^{-1}$ CO$_{2}$ during the photoperiod and had an air velocity of 0.3m.s$^{-1}$ and relative humidity of 80%. Plug seedlings raised were transplanted to rockwool slabs in a glasshouse and were grown hydroponically using the same nutrient solutions used for seedling culture for 37 days (experiment 1) and 35 days (experiment 2). Plant height was affected more by mean daily temperature than by interaction of day and night temperatures. Plant height was the highest in 16/16$^{\circ}C$ treatment. Leaf count was not affected by day and night temperatures, and the chlorophyll concentration was the highest in 16/$25^{\circ}C$ treatment. Fresh and dry weights of stem tended to be greater in treatments of constant day and night temperature. The number of node on which first and second flower clusters were set was significantly higher in 25/$25^{\circ}C$ treatment than in the other treatments. Days to flower of the first flower on the first flower cluster were the greatest in 25/$25^{\circ}C$ and the least in 16/$25^{\circ}C$ treatment. Vegetative and reproductive growth, such as height, fresh and dry weights, days to flower, and nodes of the 1st and 2nd flower cluster set were affected by day/night temperatures.

  • PDF

Effect of Plug Cell Volume and Medium Composition on Rooting and Growth of Lateral Shoot Cuttings of Tomato Plant (플러그 셀의 크기와 배지(培地) 조성이 토마토 삽목묘(揷木苗)의 발근(發根)과 생육(生育)에 미치는 영향(影響))

  • Yang, Seung-Koo;Cho, Myeong-Su;Choe, Kyeong-Ju;Kim, Wol-Soo
    • Horticultural Science & Technology
    • /
    • v.19 no.3
    • /
    • pp.325-328
    • /
    • 2001
  • This experiment was conducted to investigate the effect of plug cell volume and medium on rooting and growth of lateral shoot cuttings of a few tomato cultivars. Plug cell volume was varied from 23 to 300 mL or control (cutting bed) and media used were carbonized rice hull (CRH), CRH+perlite, CRH+peatmoss and perlite+peatmoss. Nursery plants were able to be transplanted in 15 to 20 days after lateral shoots cutting in tomato. In volume of cutting media, the pots of 23 to 300 mL were proper, although root growth was gradually limited in decreased media volume. Rooting and growth was not influenced by plug tray cell medium of 120 mL or more. Cherry tomato Pepe (c.v.) showed 100% rooting and better growth, while in Momotaro (c.v.) rooting was 90%. There were 100% rooting and no considerable changes grown in all media tested of cutting plug tray volume of 30 mL.

  • PDF

Effects of Timings and Light Intensities of Supplemental Red Light on the Growth Characteristics of Cucumber and Tomato Plug Seedlings (적색광 처리시기 및 광도가 오이 및 토마토 플러그묘의 생장에 미치는 영향)

  • Zhang, Cheng-Hao;Chun, Ik-Jo;Park, Yong-Chul;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.173-179
    • /
    • 2003
  • This study was established to control the overgrowth of cucumber and tomato plug seedlings by controlling of irradiation timings light intensities of red (R) light. Compared with the control, end-of-day (EOD) timing of R irradiation significantly reduced the seeding heights by 21.3% and 14.2% in cucumber and tomato, respectively. In addition, both plant seedlings treated with R light at EOD timing had the thickest stem diameter. Tomato seedlings treated with R light at EOD showed th highest chlorophyll content and the smallest leaf size. Dry weights of above ground plant tissue in both plant seedlings were significantly reduced by EOD R light treatment. And both plant seedlings treated with EOD treatment had the lowest T/R ratio, and the highest compactness rates. The increased intensities of R light resulted in the shorter plant heights in cucumber and tomato plant seedlings. It also reduced the length of hypocotyls and internodes and the size of leaves in the both seedlings. Elevated R light intensities tended to increase the stem diameter and chlorophyll contents. Dry weights of above ground plant tissue and roots in both plant seedlings were reduced by the elevated R irradiation. Cucumber seedlings treated with 2 and 8 $mol{\cdot}m^{-2}{\cdot}s^{-1}$ and tomato seedlings treated with 8 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ had significantly lower T/R ratio the other treatments tested.