• Title/Summary/Keyword: Lycopersicon esculentum

Search Result 176, Processing Time 0.026 seconds

Effect of Root-Zone Temperature in Hydroponics on Plant Growth and Nutrient Uptake in Vegetable Crops (수경재배(水耕栽培)에서 양액온도(養液溫度)가 채소작물(菜蔬作物)의 생장(生長) 및 무기양분흡수(無機養分吸收)에 미치는 영향(影響))

  • Jang, Byoung-Choon;Hong, Young-Pyo;Chun, Jae-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 1992
  • This study was carried out to investigate the effects of root-zone temperature in hydroponics on the plant growth and nutrient uptake of lettuce(Lactuca sativa L), tomato (Lycopersicon esculentum Mill), and cucumber (Cucumis sativus L). Respiration rate in roots increased with increase in root-zone temperature. At $10^{\circ}C$ of root-zone temperature, respiration rate in lettuce root was higher than those in tomato and cucumber. Increasing rate of root respiration in tomato with increase in root-zone temperature was greater than those in lettuce and cucumber. The lowest dry weight and leaf area of the crops studied were obtained at $10^{\circ}C$ of root-zone temperature, but they were not different between 20 and $30^{\circ}C$. Increase in root-zone temperature generally resulted in increase in T/R ratio and net assimilation rate. At the low root-zone temperature, root growth and leaf area of tomato and cucumber were severely affected. Relative growth rates of lettuce and cucumber were also greatly reduced by the low root-zone temperature. Contents of N, P, K, Ca, and Mg in the crops increased as root-zone temperature increased from 10 to $20^{\circ}C$, whereas only Ca content in tomato and cucumber increased with increase in root-zone temperature to $30^{\circ}C$. Remarkably low contents of P and Mg in the crops were found at the low root-zone temperature. Inhibition of plant growth and nutrient uptake due to low root-zone temperature was much greater in cucumber than in lettuce and tomato.

  • PDF

Quality Changes in Tomato Fruits Caused by Genotype and Environment Interactions (재배환경과 유전형의 상호작용에 따른 토마토 과실 품질 변화)

  • Park, Minwoo;Chung, Yong Suk;Lee, Sanghyeob
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.361-372
    • /
    • 2017
  • Bred and grown around the world, tomato (Solanum spp.) has highly valuable fruits containings various anti-oxidants such as lycopene, flavonoids, glutamine, and ${\beta}-carotene$. Several studies have explored, way in which to enhance the growth, management and quality of tomato, we focus on the management of growth for yield rather than quality. The expression of superior agronomic traits depends on where cultivars are grown. We evaluated 10 cultivars grown in three environment for their lycopene. HTL3137 ($70.48mg{\cdot}kg^{-1}$), which was grown in Yoeju in spring/summer, contained the highest lycopene content, while HTL10256 ($20.9mg{\cdot}kg^{-1}$), which was grown in Suwon in spring/summer, contain the least lycopene.Correlations between color components and lycopene content varied according to growing location and season. In spring/summer-grown tomatoes from Suwon, no significant correlation was observed between any color component (redness [R], greenness [G], blueness [B], luminosity, $L^*$, $a^*$, $b^*$, hue and chroma) and lycopene content. A correlation was observed between B and lycopene content in tomatoes grown in Yeoju during the same season. In tomatoes grown in Yeoju in fall/winter, significant correlations were found between lycopene content and G, luminosity, $L^*$, and hue. Variance in interactions between genotype, environment, and genotype ${\times}$ environment (G ${\times}$ E) using Minimum Norm Quadratic Unbiased Estimate (MINQUE) analysis indicated that lycopene content depends on genotype (51.33%), environment (49.13%), and G ${\times}$ E (21.43%). However, when the Additive Main Effects and Multiplicative Interaction (AMMI) was used, the G ${\times}$ E value was highest.

Changes of Tomato Growth and Soil Chemical Properties as Affected by Soil pH and Nitrogen Fertilizers (토양 pH와 질소 관비 비종에 따른 토마토 생육 및 토양화학성 변화)

  • Kang, Yun-Im;Roh, Mi-Young;Kwon, Joon-Kook;Park, Kyoung-Sub;Cho, Myeong-Whan;Lee, Si-Young;Lee, In-Bok;Kang, Nam-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.328-335
    • /
    • 2010
  • This study was conducted to determine effects of soil pH and form of nitrogen fertilizers on tomato growth and chemical properties of greenhouse soil using ferigation system. Tomato (Lycopersicon esculentum Mill. cv. Superdoterang) were grown for three months in 18 L pots filled with two soil (pH 6.8 and pH 8.7). 4 different nitrogen fertilizers (urea, ammonium nitrate, ammonium sulfate, and potassium nitrate) were fertigated with different concentrations of 0, 10, 50, and 100 mg N/L during tomato cultivation. Soil pH 8.7 decreased yield and chlorophyll fluorescence compared with soil pH 6.8. Yield at soil pH 8.7 increased by ammonium nitrate and ammonium sulfate fertigation. Soil pH 6.8 induced increment of yield by nitrogen concentration than form of nitrogen fertilizers. Soil pH after cultivation of tomato decreased by application of ammonium nitrate and ammonium sulfate. Soil EC by 100 mg N/L application of ammonium sulfate was twice as much as other fertilizers. Form of nitrogen fertilizer had less effect on concentration of soil $NH_4^+$-N and $NO_3^-$-N in soil but the concentrations slightly reduced at pH 8.7. These results indicate that application of urea and ammonium nitrate for a nitrogen source of fertigation has little affects on soil chemical properties before and after tomato cultivation.

Relativeness between Growth and Bio-informations of Aeroponically Grown Tomato as Influenced by Spray Intervals of Nutrient Solution (양액의 분무간격에 따른 분무경재배 토마토의 생장 및 생체정보와의 관련성)

  • 정순주;소원온;지전영남;영목방부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1992
  • This experiment was carried oui to determine the relativeness between growth, yield characters and bio-informations as influenced by the spray and rest time intervals of nutrient solution. Tomato(Lycopersicon esculentum Mill.) were grown in aeroponic system on a misting schedule of continuously 60 sec, 30 sec and 10 sec at 10 min intervals with full strength Yamazaki's solution recommended for tomato production. The results obtained were as follows : 1. Leaf area was highest in the plot of 30 sec spray and 10 min rest while the forest one was the plot of 60 sec spray and 10 min rest. Growth characteristics in terms of dry weight of each organ, number of flower, number of flower setted and fruit dry weight were greater in the plot of 30 sec spray and 10 min rest than the other treatments. 2. The number of flower increased with decreasing dry weight but number of flower sorted was not significantly different among treatment except for the plot of 60 sec spray and 10 min rest. 3. Leaf dry weight and fruit dry weight were highly correlated so that 30 sec spray and 10 min rest plot which is the highest fruit dry weight showed the largest leaf area. Continuously sprayed plot reduced markedly the fruit dry weight compared with leaf area. Optimum spray and rest time of nutrient solution in the range of this experiment was determined as 30 sec spray and 10 min rest. 4. Solar radiation within glasshouse during daytime reduced severely compared with outdoor one and air temperature within greenhouse was higher than the leaf temperature of tomato plant. The changes of environmental factors, solar radiation, temperature were accompanied with the sensitive change of bio-informations of tomato leaf Especially differences of spray intervals of nutrient solution affected greatly to the changes of bio-informations : leaf water potential, stomatal resistance and leaf temperature etc. 5. The changing patterns of leaf growth as influenced by the spray and rest intervals of nutrient solution were closely related to the leaf water potential, stomatal resistance and leaf temperature. Feasibility was demonstrated that measurement of bio-information of tomato leaf as influenced by the change of environmental factors could be expected to the amount of growth and fruit yield.

  • PDF

Quality Changes of Cherry Tomato with Different Chlorine Dioxide ($ClO_2$) Gas Treatments during Storage (저장 중 이산화염소 가스의 처리 조건에 따른 방울토마토의 품질변화)

  • Choi, Woo Suk;Ahn, Byung Joon;Kim, Young Shik;Kang, Ho-Min;Lee, Jung-Soo;Lee, Youn Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 2013
  • The effects of chlorine dioxide gas ($ClO_2$) treatments between high-concentration-short-time and low-concentration-long-time on maintaining the quality of cherry tomatoes (Lycopersicon esculentum Mill. cv 'unicorn') were investigated. Tomatoes were treated with 5 ppm for 10 min and 10 ppm for 3 min as high-concentration-short-time $ClO_2$ gas treatment conditions and 1 ppm for once a day interval in terms of low-concentration-long-time $ClO_2$ gas treatment condition, respectively. After $ClO_2$ gas treatments, tomatoes were storage at 5 and $23^{\circ}C$ for 7 days. Weight loss, changes in tomato color, firmness, soluble solids content, pH, growth of total microorganism, and decay rate were evaluated. On day 7, tomatoes treated with chlorine dioxide gas showed low values of respiratory rate, total microbial growth, and decay rate compared to those of tomato without chlorine dioxide gas treatment. Additionally, tomatoes treated the chlorine dioxide were kept the values of firmness and soluble solids content during storage. However, chlorine dioxide gas treatment on tomatoes had no direct effect on weight loss, pH, and color. Results showed that both $ClO_2$ concentration and treatment time played the important roles for keeping the quality of tomatoes during storage. Tomatoes with chlorine dioxide gas treatment of low-concentration-long-time had more effective values of firmness, the total microbial growth, and decay rate than those with two chlorine dioxide gas treatments of high-concentration-short-time. Results suggest the potential use of chlorine dioxide gas treatment of low-concentration-long-time as an highly effective method for keeping the freshness of cherry tomato.

  • PDF

The Assessment of Photochemical Index of Nursery Seedlings of Cucumber and Tomato under Drought Stress (건조스트레스에 의한 오이와 토마토 공정육묘의 광화학적 지표 해석)

  • Ham, Hyun Don;Kim, Tae Seong;Lee, Mi Hyun;Park, Ki Bae;An, Jae-Ho;Kang, Dong Hyeon;Kim, Tae Wan
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.479-487
    • /
    • 2018
  • The purpose of this study is to analyze photochemical activity of nursery seedlings under drought stress, using chlorophyll fluorescence reaction analysis. Young nursery seedlings of tomato (Lycopersicon esculentum Mill.) and cucumber (Cucumis sativa L.), were grown under drought stress for 8 days. Analysis of chlorophyll fluorescence reaction (OJIP) and parameters, were performed to evaluate photochemical fluctuation in nursery seedlings under drought stress. Chlorophyll fluorescence reaction analysis showed maximal recorded fluorescence (P) decreased from the 5 day after treatment in tomato seedlings, while an amount of chlorophyll fluorescence increased at the J-I step. Thus, physiological activity was reduced. In cucumber seedlings, maximal recorded fluorescence (P) and maximal variable fluorescence ($F_V$) lowered from the 4 day after treatment, and chlorophyll fluorescence intensity of J-I step increased. Chlorophyll fluorescence parameter analysis showed electron transfer efficiency of PSII and PSI were significantly inhibited with decreasing $ET2_O/RC$ and $RE1_O/RC$ from the 5 day after treatment, in tomato seedlings and from the 4 day after treatment, in cucumber seedlings. $ET2_O/RC$ and $PI_{ABS}$ significantly changed. In conclusion, 6 indices such as $F_V/F_M$, $DI_O/RC$, $ET2_O/RC$, $RE1_O/RC$, $PI_{ABS}$ and $PI_{TOTAL}ABS$ were selected for determining drought stress in nursery seedlings. Drought stress factor index (DFI) was used to evaluate whether the crop was healthy or not, under drought stress. Cucumber seedlings were less resistant to drought stress than tomato seedlings, in the process of drought stress.