• Title/Summary/Keyword: Luteinizing hormone receptor

Search Result 42, Processing Time 0.029 seconds

Cell-Surface Loss of Constitutive Activating and Inactivating Mutants of Eel Luteinizing Hormone Receptors

  • Byambaragchaa, Munkhzaya;Choi, Seung-Hee;Kim, Dong-Wan;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.225-234
    • /
    • 2021
  • The present study aimed to investigate the mechanism of cell surface receptor loss by two constitutively activating mutants (designated L469R, and D590Y) and two inactivating mutants (D417N and Y558F) of the luteinizing hormone receptor (LHR) in the Japanese eel Anguilla japonica, known to naturally occur in human LHR transmembrane domains. We investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in HEK 293 cells. The expression level of wild-type eel LHR was considered to be 100%, and the expression levels of L469R and D417N were 97% and 101%, respectively, whereas the expression levels of D590Y and Y558F slightly increased to approximately 110% and 106%, respectively. The constitutively activating mutants L469R and D590Y exhibited a decrease in cell surface loss in a manner similar to that of wild-type eel LHR. The rates of loss of cell surface agonist-receptor complexes were observed to be very rapid (2.6-6.2 min) in both the wild-type eel LHR and activating mutants. However, cell surface receptor loss in the cells expressing inactivating mutants D417N and Y558F was slightly observed in the cells expressing inactivating mutants D417N and Y558F, despite treatment with a high concentration of agonist. These results provide important information on LHR function in fish and the regulation of mutations of highly conserved amino acids in glycoprotein hormone receptors.

Expression of Luteinizing Hormone (LH) and Its Receptor Gene in Rat Mammary Gland (흰쥐 유선에서의 Luteinizing Hormone (LH)과 수용체 유전자 발현)

  • 류종순;김재만;이성호
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.231-236
    • /
    • 2000
  • Recent studies have clearly shown that the expression of genes for gonadotropin-releasing hormone (GnRH) and its receptor in the rat reproductive organs including ovary, testis, placenta uterus and mammary gland. Moreover, luteinizing hormone (LH) classically known to be a main target product of GnRH in anterior pituitary has been found in rat gonads. These findings suggested the presence of local circuit composed of GnRH and LH in the rat gonads. The present study was undertaken to elucidate whether the genes for LH and its receptor are expressed in rat mammary gland. Expression of LH and its receptor genes in the rat mammary gland was demonstrated by reverse transcription-polymerase chain reaction (RT-PCR) and specific LH radioimmunoassay (RIA). The LH${\beta}$ transcripts in the mammary gland from cycling rats contained the pituitary type of LH${\beta}$ exons 1~3 encoding the entire LH${\beta}$ polypeptide but lacked the rat testis-specific LH${\beta}$ exon(s). Presence of ${\alpha}$ -subunit transcripts in the rat mammary gland were determined by RT-PCR. The cDNA fragments encoding exons 2~7 of rat LH receptor transcripts were amplified in both rat ovary and mammary gland samples. We could detect the GnRH expression in mammary gland from cycling virgin rats, and this result disagreed with previous report that mammary GnRH expression is occured in lactating rats only. Considerable amounts of immunoreactive LH molecules with good RIA parallelism in standard curve were detected in crude extracts from the rat mammary gland, indicating that the immunoreactive LH materials in the gland might be identical to authentic pituitary LH. To our knowledge, the present study demonstrated for the first time the expression of LH subunits and LH receptor in the rat mammary gland. Our findings suggested that the mammary gland might be the novel source and target of LH and the mammary LH could be act as a local regulator with auto-and/or paracrine manner under the regulation of local GnRH.

  • PDF

Opposite Localization of Luteinizing Hormone Receptors and Galectin-3 in Mature Mouse Ovaries (성숙마우스의 난소에서 황체형성호르몬수용체와 galectin-3의 상반된 면역조직화학적 발현분포)

  • Kim, Ju-Hwan;Yang, Mi-Young;Kim, Sung-Ho;Kim, Jong-Choon;Kim, Seung-Joon;Joo, Hong-Gu;Shin, Tae-Kyun;Moon, Chang-Jong
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.687-691
    • /
    • 2012
  • The present study evaluated the localization of luteinizing hormone receptors (LHR) and galectin-3 (Gal-3), a beta-galactoside-binding animal lectin, in the mature mouse ovaries by immunohistochemical analysis. Intense LHR immunoreactivity was detected in the active corpus luteum (CL), whereas expression of Gal-3 was high in the regressing CL and atretic follicle. In the CL of pregnant mice, LHR immunoreactivity was intense, but Gal-3 expression was low. Thus, LHR and Gal-3 had opposite patterns of expression in mature mouse ovaries, suggesting that both proteins have stage-specific expression patterns and are possibly involved in CL formation and regression.

Effects of enzymolysis and fermentation of Chinese herbal medicines on serum component, egg production, and hormone receptor expression in laying hens

  • Mei Hong Jiang;Tao Zhang;Qing Ming Wang;Jin Shan Ge;Lu Lu Sun;Meng Qi Li;Qi Yuan Miao;Yuan Zhao Zhu
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.95-104
    • /
    • 2024
  • Objective: In the present study, we aimed to investigate the effects of enzymolysis fermentation of Chinese herbal medicines (CHMs) on egg production performance, egg quality, lipid metabolism, serum reproductive hormone levels, and the mRNA expression of the ovarian hormone receptor of laying hens in the late-laying stage. Methods: A total of 360 Hy-Line Brown laying hens (age, 390 days) were randomly categorized into four groups. Hens in the control (C) group were fed a basic diet devoid of CHMs, the crushed CHM (CT), fermented CHM (FC), and enzymatically fermented CHM (EFT) groups received diets containing 2% crushed CHM, 2% fermented CHM, and 2% enzymatically fermented CHM, respectively. Results: Compared with crushed CHM, the acid detergent fiber, total flavonoids, and total saponins contents of fermented CHM showed improvement (p<0.05); furthermore, the neutral and acid detergent fiber, total flavonoids, and total saponins contents of enzymatically fermented CHM improved (p<0.05). At 5 to 8 weeks, hens in the FC and EFT groups showed increased laying rates, haugh unit, albumin height, yolk color, shell thickness, and shell strength compared with those in the C group (p<0.05). Compared with the FC group, the laying rate, albumin height, and Shell thickness in the EFT group was increased (p<0.05). Compared with the C, CT, and FC groups, the EFT group showed reduced serum total cholesterol and increased serum luteinizing hormone levels and mRNA expressions of follicle stimulating hormone receptor and luteinizing hormone receptor (p<0.05). Conclusion: These results indicated that the ETF group improved the laying rate and egg quality and regulated the lipid metabolism in aged hens. The mechanism underlying this effect was likely related to cell wall degradation of CHM and increased serum levels of luteinizing hormone and mRNA expression of the ovarian hormone receptor.

Specific Biological Activity of Equine Chorionic Gonadotropin (eCG) Glycosylation Sites in Cells Expressing Equine Luteinizing Hormone/CG (eLH/CG) Receptor

  • Byambaragchaa, Munkhzaya;Cho, Seung-Hee;Joo, Hyo-Eun;Kim, Sang-Gwon;Kim, Yean-Ji;Park, Gyeong-Eun;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.199-211
    • /
    • 2021
  • Equine chorionic gonadotropin (eCG), produced by the endometrial cups of the placenta after the first trimester, is a specific glycoprotein that displays dual luteinizing hormone (LH)-like and follicle-stimulating hormone (FSH)-like effects in non-equid species. However, in equidaes, eCG exhibits only LH-like activity. To identify the specific biological functions of glycosylated sites in eCG, we constructed the following site mutants of N- and O-linked glycosylation: eCGβ/αΔ56, substitution of α-subunit56 N-linked glycosylation site; eCGβ-D/α, deletion of the O-linked glycosylation sites at the β-subunit, and eCGβ-D/αΔ56, double mutant. We produced recombinant eCG (rec-eCG) proteins in Chinese hamster ovary suspension (CHO-S) cells. We examined the biological activity of rec-eCG proteins in CHO-K1 cells expressing the eLH/CG receptor and found that signal transduction activities of deglycosylated mutants remarkably decreased. The EC50 levels of eCGβ/αΔ56, eCGβ-D/α, and eCGβ-D/αΔ56 mutants decreased by 2.1-, 5.6-, and 3.4-fold, respectively, compared to that of wild-type eCG. The Rmax values of the mutants were 56%-80% those of wild-type eCG (141.9 nmol/104 cells). Our results indicate that the biological activity of eCG is greatly affected by the removal of N- and O-linked glycosylation sites in cells expressing eLH/CGR. These results provide important information on rec-eCG in the regulation of specific glycosylation sites and improve our understanding of the specific biological activity of rec-eCG glycosylation sites in equidaes.

Activating and inactivating mutations of the human, rat, equine and eel luteinizing hormone/chorionic gonadotropin receptors (LH/CGRs)

  • Min, Kwan-Sik;Byambaragchaa, Munkhzaya;Choi, Seung-Hee;Joo, Hyo-Eun;Kim, Sang-Gwon;Kim, Yean-Ji;Park, Gyeong-Eun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.169-174
    • /
    • 2021
  • Mutations in the luteinizing hormone/chorionic gonadotropin receptors (LH/CGRs), representatives of the G protein-coupled receptor family, have been rapidly identified over the last 20 years. This review aims to compare and analyze the data reported the activating and inactivating mutations of the LH/CGRs between human, rat, equine and fish, specifically (Japanese eel Anguilla japonica). Insights obtained through detailed study of these naturally-occurring mutations provide a further update of structure-function relationship of these receptors. Specifically, we present a variety of data on eel LH/CGR. These results provide important information about LH/CGR function in fish and the regulation of mutations of the highly conserved amino acids in glycoprotein hormone receptors.

Expression of Luteinizing Hormone(LH) Gene in Human Uterus (인간의 자궁에서의 Luteinizing Hormone (LH) 유전자 발현)

  • Kim, Sung-Rye;Lee, Sung-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.377-381
    • /
    • 1999
  • Objectives: Recent studies, including our own, demonstrated that the novel expression of LH gene in rat gonads and uterus, indicating that the local production and action of the LH-like molecule. In the present study, we investigated whether human uterus also expresses the LH gene. Design: Reverse transcription-polymerase chain reaction (RT-PCR) amplified the cDNA fragments coding $LH_{\beta}$ polypeptide from human endometrium but not from myometrium. Presence of the transcripts for the ${\alpha}$-subunit in human endometrium was also confirmed by RT-PCR. Results: Transcripts for $LH_{\beta}$ subunit were detected in endometrial samples from women with endometriosis. The gene for LH/hCG receptor was expressed in both endometrium and myometrium, showing good agreement with previous studies. Increased level of $LH_{\beta}$ transcript was determined in the endometrium from follicular phase compared to that from luteal phase. Conclusion: Taken together, our findings demonstrated that 1) the genes for LH subunits and LH/hCG receptor are expressed in human uterus, 2) the uterine LH expression was changed during menstrual cycle, suggesting that the uterine LH may playa local role in the control of uterine physiology and function(s).

  • PDF

Efficacy of Combined Aromatase Inhibitor and Luteinizing Hormone-Releasing Hormone Agonist in Premenopausal Metastatic Breast Cancer

  • Kim, Sang Hee;Choi, Jihye;Park, Chan Sub;Kim, Hyun-Ah;Noh, Woo Chul;Seong, Min-Ki
    • Journal of Breast Disease
    • /
    • v.6 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Purpose: Endocrine therapy is the preferred treatment for hormone receptor (HR)-positive metastatic breast cancer (MBC). We investigated the efficacy of combined aromatase inhibitor (AI) and luteinizing hormone-releasing hormone (LHRH) agonist in premenopausal patients with HR-positive MBC. Methods: We retrospectively analyzed the medical records of 21 HR-positive premenopausal MBC patients treated with combined AI and LHRH agonist therapy. Results: The median follow-up period was 32.9 months. The overall response rate was 47.6%, with three complete responses (14.3%) and seven partial responses (33.3%). Nine patients (42.9%) achieved stable disease lasting more than 6 months; thus, the clinical benefit rate was 90.4%. The median time to progression was 45.4 months. No patients experienced grade 3 or 4 toxicity. Conclusion: Combined AI and LHRH agonist treatment safely and effectively induced remission or prolonged disease stabilization, suggesting that this could be a promising treatment option for HR-positive premenopausal patients with MBC.

Expression of Luteinizing Hormone (LH) and Its Receptor Gene in Uterus from Cycling Rats (발정 주기중 흰쥐 자궁에서의 Luteinizing Hormone (LH)과 수용체 유전자 발현)

  • Kim, Sung-Rye;Lee, Sung-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.383-387
    • /
    • 1999
  • Objective: There is increasing evidence for the expression of rat in gene in several extrapituitary sites including testis and ovary. We also have demonstrated that the local LH expression in the rat epididymis and uterus, the major accessory sex organs in male and female reproductive system, respectively. Design: The present study was undertaken to elucidate whether the gene for LH receptor is expressed in rat uterus and whether the expressions of uterine LH and its receptor are differentially regulated during estrous cycle. Presence of the transcripts for rat LH receptor in the rat uterine tissue were confirmed by touchdown reverse transcription-polymerase chain reaction (RT-PCR). Results: In $LH{\beta}$ semi-quantitative RT-PCR, the highest expression level was shown in estrus stage. The level of ill receptor transcripts was also fluctuated during estrous cycle. In ovariectomized rats (OVX + Oil), the expressions of both uterine LH and LH-R were markedly reduced when compared to those from normal rats. Supplement with estradiol $17{\beta}$ to the ovariectomized rats (OVX + $E_2$) restored the expression levels of LH and its receptor to the levels in uteri from normal rats. Conclusion: Our findings indicated that 1) LH and its receptor gene are expressed in the rat uterus from cycling rats, 2) the expression of uterine LH and its receptor is mainly, if not all, under the control of ovarian sex steroid(s). These results suggested that the uterine LH may act as a local regulator with auto and/or paracrine manner, though the posibility that the pituitary LH may act directly on the regulation of uterine functions could not be discarded.

  • PDF

The Cellular Localization of GnRH and LHR in Aged Female Mice

  • Kim, Young-Jong;Park, Byung-Joon;Lee, Won-Jae;Kim, Seung-Joon
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.305-311
    • /
    • 2018
  • Gonadotropin releasing hormone (GnRH) centrally plays a role in control of the hypothalamic-pituitary-gonadal axis-related hormone secretions in the reproductive neuroendocrine system. In addition, hormone receptors like luteinizing hormone receptor (LHR) are important element for hormones to take effect in target organ. However, ageing-dependent changes in terms of the distribution of GnRH neurons in the brain and LHR expression in the acyclic ovary have not been fully understood yet. Therefore, we comparatively investigated those ageing-dependent changes using young (1-5 months), middle (11-14 months) and old (21-27 months) aged female mice. Whereas a number of GnRH positive fibers and neurons with monopolar or bipolar morphology were abundantly observed in the brain of the young and middle aged mice, a few GnRH positive neurons with multiple dendrites were observed in the old aged mice. In addition, acyclic ovary without repeated development and degeneration of the follicles was shown in the old aged mice than others. LHR expression was localized in theca cells, granulosa cell, corpora lutea and atretic follicle in the ovaries from young and middle aged mice, in contrast, old aged mice had few positive LHR expression on the follicles due to acyclic ovary. However, the whole protein level of LHR was higher in the ovary of old aged mice than others. These results are expected to be used as an important basis on the relationship between GnRH and LHR in old aged animals as well as in further research for reproduction failure.