• Title/Summary/Keyword: Lung-targeting

Search Result 100, Processing Time 0.025 seconds

SF3B4 Depletion Retards the Growth of A549 Non-Small Cell Lung Cancer Cells via UBE4B-Mediated Regulation of p53/p21 and p27 Expression

  • Kim, Hyungmin;Lee, Jeehan;Jung, Soon-Young;Yun, Hye Hyeon;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.718-728
    • /
    • 2022
  • Splicing factor B subunit 4 (SF3B4), a component of the U2-pre-mRNA spliceosomal complex, contributes to tumorigenesis in several types of tumors. However, the oncogenic potential of SF3B4 in lung cancer has not yet been determined. The in vivo expression profiles of SF3B4 in non-small cell lung cancer (NSCLC) from publicly available data revealed a significant increase in SF3B4 expression in tumor tissues compared to that in normal tissues. The impact of SF3B4 deletion on the growth of NSCLC cells was determined using a siRNA strategy in A549 lung adenocarcinoma cells. SF3B4 silencing resulted in marked retardation of the A549 cell proliferation, accompanied by the accumulation of cells at the G0/G1 phase and increased expression of p27, p21, and p53. Double knockdown of SF3B4 and p53 resulted in the restoration of p21 expression and partial recovery of cell proliferation, indicating that the p53/p21 axis is involved, at least in part, in the SF3B4-mediated regulation of A549 cell proliferation. We also provided ubiquitination factor E4B (UBE4B) is essential for p53 accumulation after SF3B4 depletion based on followings. First, co-immunoprecipitation showed that SF3B4 interacts with UBE4B. Furthermore, UBE4B levels were decreased by SF3B4 depletion. UBE4B depletion, in turn, reproduced the outcome of SF3B4 depletion, including reduction of polyubiquitinated p53 levels, subsequent induction of p53/p21 and p27, and proliferation retardation. Collectively, our findings indicate the important role of SF3B4 in the regulation of A549 cell proliferation through the UBE4B/p53/p21 axis and p27, implicating the therapeutic strategies for NSCLC targeting SF3B4 and UBE4B.

Irritable Larynx Syndrome with Dyspnea (호흡곤란을 동반하는 과민성 후두 증후군)

  • Ahn, Cheol Min
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.27 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • An irritable larynx syndrome is characterized by a sudden episodic dyspnea and dysphonia that is difficult to diagnose, and patients are often treated unnecessarily and/or too much. A correct diagnosis can be made by monitoring the larynx closing in the reversed direction during inhalation and posterior chink with videolaryngoscopy and by measuring a decrease in air flow volume during inhalation with a lung function test. Patients can be effectively treated with thorough differential diagnosis. Medications targeting precipitating factors, physical therapy sessions to improve abnormal larynx movement, counseling to reduce patients'anxiety rising from dyspnea, and etc. can effectively alleviate symptoms.

  • PDF

RNA Interference as a Plausible Anticancer Therapeutic Tool

  • Ramachandran, Puthucode Venkatakrishnan;Ignacimuthu, Savarimuthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2445-2452
    • /
    • 2012
  • RNA interference has created a breakthrough in gene silencing technology and there is now much debate on the successful usage of RNAi based methods in treating a number of debilitating diseases. Cancer is often regarded as a result of mutations in genomic DNA resulting in faulty gene expression. The occurrence of cancer can also be influenced by epigenetic irregularities in the chromatin structure which leads to alterations and mutations in DNA resulting in cancer cell formation. A number of therapeutic approaches have been put forth to treat cancer. Anti cancer therapy often involves chemotherapy targeting all the cells in common, whereby both cancer cells as well as normal cells get affected. Hence RNAi technology has potential to be a better therapeutic agent as it is possible to deactivate molecular targets like specific mutant genes. This review highlights the successful use of RNAi inducers against different types of cancer, thereby paving the way for specific therapeutic medicines.

Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms

  • Luo, Ying;Yang, Qianqian;Zhang, Dan;Yan, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.

Identification of inhibitors against ROS1 targeting NSCLC by In- Silico approach

  • Bavya, Chandrasekhar
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.171-177
    • /
    • 2022
  • ROS1 (c-ros oncogene) is one of the gene with mutation in NSCLC (non-small cell lung cancer). The increased expression of ROS1 is leading to the increase proliferation of cell, cell migration and survival. Crizotinib and Entrectinib are the drugs that have been approved by FDA against ROS1 protein, but recently patients started to develop resistance against Crizotinib and there is a need of new drug that could act as an effective drug against ROS1 for NSCLC. In this study, we have performed virtual screening, where compounds are taken from Zinc 15 dataset and molecular docking was performed. The top compounds were taken based upon their binding affinity and their interactions with the residues. The compounds stability and chemical reactivity was also studied through Density Functional theory and their properties. Further study of these compounds could reveal the required information of ROS1-inhibitor complex and in the discovery of potent inhibitors.

In-silico analysis of Lavender oil for Non-small cell lungcancer targeting ROS1

  • Bavya Chandrasekhar
    • Journal of Integrative Natural Science
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2023
  • Lavender oil is a prolonged history in ancient medicine and has a wide range of biological effects. The lavender essential oil has 50 different constituents that have different therapeutic significance. The compounds that are separated from essential oil can be used for the anticancer treatment of non-small cell lung cancer. ROS1 is one of the major targets for NSCLC. The compounds from lavender essential oil are separated through GC-MS. From 91 compounds the top compounds that are having high retention values are taken for Molecular docking study against the ROS1 target protein. The binding affinity and the docked pose for those compounds are studied. Later, the chemical reactivity of the compounds is studied by Density Functional Theory. The potent compounds must be validated by in vivo study.

Preparation and Biodistribution of Re-188-Sulfur Colloid Suspension in Lipiodol (Re-188이 표지된 황 교질(Sulfur Colloid)/리피오돌(Lipiodol)의 제조와 생체내 분포)

  • Kim, Young-Ju;Jeong, Jae-Min;Kim, Seok-Ki;Son, Mi-Won;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.301-307
    • /
    • 2003
  • Purpose: Lipiodol is used for targeting liver cancers by administrating through the hepatic artery. In the present study, feasibility of Re-188-sulfur colloid suspension in lipiodol as a liver cancer targeting agent was investigated. Materials and Methods: Re-188-sulfur colloid was prepared, harvested by centrifugation, washed with organic solvent and then suspended into lipiodol. Biodistribution of Re-188-sulfur colloid in normal saline and its suspension in lipiodol in mice after 1 hr of injection through the tail vein were investigated. Biodistribution and autoradiography of tumor-hearing liver was acquired after 5 min post-injection into left ventricle of the tumor-inoculated rats. Results: After 1 hr of injection with Re-188-sulfur colloid suspensiob in lipiodol through the tail vein in normal mice (n=3), the uptakes in the liver and lung were $5.2{\pm}0.7\;and\;91.0{\pm}1.7%$ ID/organ, respectively. After 5 min of injection with Re-188-sulfur colloid suspention in lipiodol through the left ventricle in the tumor-inoculated rats (n=4), uptakes in the normal liver, hepatoma, and lung were $0.41{\pm}0.28,\;1.88{\pm}1.57,\;and\;1.65{\pm}1.54%$ ID/organ, respectively. And autoradiography of hepatoma showed increased uptake than normal liver tissues. Conclusion: Re-188-sulfur colloid suspension in lipiodol injected through the artery shows higher uptake in the hepatoma than normal liver tissue that indicates the feasibility as a new radiopharmaceutical for therapy of hepatoma.

Lack of Mutations in Protein Tyrosine Kinase Domain Coding Exons 19 and 21 of the EGFR Gene in Oral Squamous Cell Carcinomas

  • Mehta, Dhaval Tushar;Annamalai, Thangavelu;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4623-4627
    • /
    • 2014
  • Background: The epidermal growth factor receptor (EGFR) plays a vital role in the activation and inactivation of receptor tyrosine kinases. Mutations in exons 19 and 21 of EGFR are commonly found to be associated with non small cell lung carcinoma and triple negative breast cancer, enhancing sensitivity to EGFR targeting chemotherapeutic agents. Since amplification and prolonged activation of EGFR molecules have been identified in oral squamous cell carcinomas (OSCC), we investigated whether OSCCs carried mutations in exons 19 and 21 of EGFR to their incidence. Materials and Methods: Tumor chromosomal DNA isolated from forty surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking exons 19 and 21 of the EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Results: Data analysis of the EGFR exon 19 and 21 coding sequences did not show any mutations in the forty OSCC samples that were analyzed. Conclusions: To the best of our knowledge, this is the first study to have investigated the genetic status of exons 19 and 21 of EGFR in Indian OSCCs and identified that mutation in EGFR exon 19 and 21 may not contribute towards their genesis. The absence of mutations also indicates that oral cancerous lesions may not be as sensitive as other cancers to chemotherapeutic agents targeting EGFR.

In Vivo Tumor Cell Distribution of Antibody-Endostatin Fusion Protein for Tumor-Specific Targeting and Pharmacokinetics (암세포 표적지향화를 위한 항체-엔도스타틴 융합단백질의 체내동태 및 종양으로의 이행성)

  • Kang, Young-Sook;Lee, Na-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.287-292
    • /
    • 2003
  • A novel antitumor agent, antibody-endostatin fusion protein $(anti-HER2/neu\;IgG3C_H3-Endostatin,\;AEFP)$ formed by genetic engineering procedure from antibody (Ab) which specifically targets to tumor cells ad angiogenesis inhibitor, endostatin (Endo) that has excellent antitumor effect, minimizes the toxicity of normal cells and selectively kills only tumor cells. The purpose of this study is to evaluate the phamacokinetic parameters and to analyze the localization of AEFP. After an intravenous injection of $150\;{\mu}l\;(5\;{\mu}Ci)\;[^{125}I]Ab,\;[^{125}I]AEFP$ to mice, blood was collected though retroorbital plexus from 15 min to 2880 min. Following the jugular vein injetion of $150\;{\mu}l\;(10\;{\mu}Ci)\;[^{125}I]Endo$, blood was collected by the use of carotid artery cannulation from 0.25 min to 30 min. Consequently, Endo was very rapidly removed from plasma compartment within 30 min. On the other hand, AEFP similar to Ab was slowly cleared from plasma. Also, Endo was metabolized about 40% within 30 min. However, AEFP was shown to metabolize less than 10% within 2880 min. The organ distribution of Endo was in order kidney, lung, spleen. Both Ab and AEFP were localized in order spleen, kidney, liver. Futhermore the tumor/blood distribution ratio of AEFP at 96 hours after injection is about 20 times higher than it of Endo at one hour after injection. In conclusion, these studies demonstrate that the anti-cancer or suppression of angiogenesis effect of Endo may be improved by the use of AEFP because the longer half life and stability of AEFP is able to selectively target antigens expressed on tumors.

MiR-1297 Regulates the Growth, Migration and Invasion of Colorectal Cancer Cells by Targeting Cyclo-oxygenase-2

  • Chen, Pu;Wang, Bei-Li;Pan, Bai-Shen;Guo, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9185-9190
    • /
    • 2014
  • Cyclo-oxygenase-2(Cox-2), a key regulator of inflammation-producing prostaglandins, promotes cell proliferation and growth. Therefore, a better understanding of the regulatory mechanisms of Cox-2 could lead to novel targeted cancer therapies. MicroRNAs are strongly implicated in colorectal cancer but their specific roles and functions have yet to be fully elucidated. MiR-1297 plays an important role in lung adenocarcinoma and laryngeal squamous cell carcinoma, but its significance in colorectal cancer (CRC) has yet to be reported. In our present study, we found miR-1297 to be down regulated in both CRC-derived cell lines and clinical CRC samples, when compared with normal tissues. Furthermore, miR-1297 could inhibit human colorectal cancer LOVO and HCT116 cell proliferation, migration, and invasion in vitro and tumorigenesis in vivo by targeting Cox-2. Moreover, miR-1297 directly binds to the 3'-UTR of Cox-2, and the expression level was drastically decreased in LOVO and HCT116 cells following overexpression of miR-1297. Additionally, Cox-2 expression levels are inversely correlated with miR-1297 expression in human colorectal cancer xenograft tissues. These results imply that miR-1297 has the potential to provide a new approach to colorectal cancer therapy by directly inhibiting Cox-2 expression.