• Title/Summary/Keyword: Lung tissue

Search Result 1,164, Processing Time 0.028 seconds

Evaluation of different media for ex vivo porcine lung culture model

  • Yang, Myeon-Sik;Zhou, Zixiong;Khatun, Amina;Nazki, Salik;Jeong, Chang Gi;Kim, Won Il;Lee, Sang Myeong;Kang, Seog-Jin;Lim, Chae Woong;Kim, Bumseok
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.4
    • /
    • pp.263-269
    • /
    • 2018
  • Developing drugs targeting respiratory pathogen is essential to control respiratory diseases. Many experiments have been performed under in vivo situation. However, in vivo experiments have economical and ethical issues. The objective of this study was to determine the possibility of developing an ex vivo lung culture system with possible application for respiratory infection studies. After isolating lungs from naïve pigs, agarose-inflated lung tissues were prepared and sliced manually. These sliced lung tissues were then subsequently placed on 24-well plates. Eight different combinations of media were used to determine the optimum ex vivo lung culture condition. In addition, lung tissues were infected with porcine reproductive and respiratory syndrome (PRRS) virus at a titer of $1{\times}10^4\;TCID_{50}/mL$. Virus growth was confirmed by titration in MARC-145 cells at 2, 4, 6 days post infection (dpi). We found that ex vivo lung culture in physiological environment was not media specific based on histopathology and cytotoxicity. However, under virus-infected condition, thickened alveolar walls in the lung tissues and stable virus titers at 2, 4, 6 dpi were shown in F12K medium suggesting that it was useful for tissue maintenance and virus infection using PRRS virus infected lung tissues. The present study shows the possibility of using porcine ex vivo lung model for respiratory infection studies.

Ex Vivo Lung Perfusion of Cardiac-death Donor Lung in Pigs

  • Paik, Hyo Chae;Haam, Seok Jin;Park, Moo Suk;Song, Joo Han
    • Korean Journal of Transplantation
    • /
    • v.28 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • Background: Lung transplantation (LTx) is a life-saving treatment for patients with end-stage lung disease; however, the shortage of donor lungs has been a major limiting factor to increasing the number of LTx. Growing experience following LTx using donor lungs after cardiac death (DCD) has been promising, although concerns remain. The purpose of this study was to develop a DCD lung harvest model using an ex vivo lung perfusion (EVLP) system and to assess the function of presumably damaged lungs harvested from the DCD donor in pigs. Methods: The 40 kg pigs were randomly divided into the control group with no ischemic lung injury (n=5) and the study group (n=5), which had 1 hour of warm ischemic lung injury after cardiac arrest. Harvested lungs were placed in the EVLP circuit and oxygen capacities (OC), pulmonary vascular resistance (PVR), and peak airway pressure (PAP) were evaluated every hour for 4 hours. At the end of EVLP, specimens were excised for pathologic review and wet/dry ratio. Results: No statistically significant difference in OC (P=0.353), PVR (P=0.951), and PAP (P=0.651) was observed in both groups. Lung injury severity score (control group vs. study group: 0.700±0.303 vs. 0.870±0.130; P=0.230) and wet/dry ratio (control group vs. study group: 5.89±0.97 vs. 6.20±0.57; P=0.560) also showed no statistically significant difference between the groups. Conclusions: The function of DCD lungs assessed using EVLP showed no difference from that of control lungs without ischemic injury; therefore, utilization of DCD lungs can be a new option to decrease the number of deaths on the waiting list.

Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms

  • Hanna Lee;Ok-Yi Jeong;Hee Jin Park;Sung-Lim Lee;Eun-yeong Bok;Mingyo Kim;Young Sun Suh;Yun-Hong Cheon;Hyun-Ok Kim;Suhee Kim;Sung Hak Chun;Jung Min Park;Young Jin Lee;Sang-Il Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.45.1-45.22
    • /
    • 2023
  • Interstitial lung disease (ILD) involves persistent inflammation and fibrosis, leading to respiratory failure and even death. Adult tissue-derived mesenchymal stem cells (MSCs) show potential in ILD therapeutics but obtaining an adequate quantity of cells for drug application is difficult. Daewoong Pharmaceutical's MSCs (DW-MSCs) derived from embryonic stem cells sustain a high proliferative capacity following long-term culture and expansion. The aim of this study was to investigate the therapeutic potential of DW-MSCs in experimental mouse models of ILD. DW-MSCs were expanded up to 12 passages for in vivo application in bleomycin-induced pulmonary fibrosis and collagen-induced connective tissue disease-ILD mouse models. We assessed lung inflammation and fibrosis, lung tissue immune cells, fibrosis-related gene/protein expression, apoptosis and mitochondrial function of alveolar epithelial cells, and mitochondrial transfer ability. Intravenous administration of DWMSCs consistently improved lung fibrosis and reduced inflammatory and fibrotic markers expression in both models across various disease stages. The therapeutic effect of DW-MSCs was comparable to that following daily oral administration of nintedanib or pirfenidone. Mechanistically, DW-MSCs exhibited immunomodulatory effects by reducing the number of B cells during the early phase and increasing the ratio of Tregs to Th17 cells during the late phase of bleomycin-induced pulmonary fibrosis. Furthermore, DW-MSCs exhibited anti-apoptotic effects, increased cell viability, and improved mitochondrial respiration in alveolar epithelial cells by transferring their mitochondria to alveolar epithelial cells. Our findings indicate the strong potential of DW-MSCs in the treatment of ILD owing to their high efficacy and immunomodulatory and anti-apoptotic effects.

Overexpression of Periostin Protein in Non-Small Cell Lung Carcinoma is Not Related with Clinical Prognostic Significance

  • Park, Won-Young;Shin, Dong-Hoon;Kim, Jae-Ho;Lee, Min-Ki;Lee, Ho-Seok;Lee, Chang-Hun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.2
    • /
    • pp.132-139
    • /
    • 2012
  • Background: Periostin is preferentially expressed in periosteum, indicating a potential role in bone formation. Recently, there have been emerging controversies about its role in invasion and metastasis of human malignancies. We attempted to determine the clinicopathological significance of periostin expression in non-small cell lung carcinoma (NSCLC). Methods: Immunohistochemical staining of periostin protein from 91 cases of NSCLCs was performed using tissue microarray blocks. The results were correlated with clinicopathological parameters. Results: Positive reaction to periostin was predominantly noted in the tumor stroma. The strongest reaction presented as a band-like pattern just around the tumor nests. Non-neoplastic lung tissue and most in-situ carcinomas did not show a positive reaction in their stroma. With respect to tumor differentiation, moderate to poor differentiated tumors (47/77) revealed even higher periostin expression than the well-differentiated ones (4/14) (p=0.024). High periostin expression was positively correlated with E-cadherin and p53 expression, but was not related with patient age, sex, tumor type, PCNA index, b-catenin, cyclin D1, pTNM-T, pTNM-N, stage, and patient survival (p>0.05). Conclusion: These results suggest that periostin might play a role during the biological progression of NSCLC, but may not be related to the clinical prognostic parameters.

Expression of Osteopontin in Non-small Cell Lung Cancer and Correlative Relation with Microvascular Density

  • Yu, Ting-Ting;Han, Zhi-Gang;Shan, Li;Tao, Jie;Zhang, Tao;Yuan, Shuai-Fei;Shen, Hong-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.29-32
    • /
    • 2014
  • Background and Objective: Lung cancer is one of the malignant diseases which most seriously threat humansurvival and development. This study aimed to assess osteopontin (OPN) expression in non-small cell lung cancer (NSCLC) and any relationship with clinicopathological features. Methods: Immunohistochemistry was used to determine OPN expression and microvascular density (MVD) in 120 cases of NSCLC also undergoing clinical assessment. Results: Moderately positive expression of OPN was found in 34.6% (41/120) and strong expression in 47.5% (57/120) of the NSCLCs; OPN expression in carcinomas was higher than in pericarcinoma tissues (P<0.05). While no obvious association was observed with NSCLC patient age, gender, maximum diameter of the tumor and pathological type, OPN expression was more commonly detected in poorly differentiated carcinoma tissue and lymph node metastasis as well as at advanced clinical stage (P<0.05); OPN expression in cancer tissue was positively correlated with MVD (r = 0.839, P = 0.000). Conclusion: OPN plays an important role in promoting tumor angiogenesis and progress of NSCLCs and has the possibility to become the new target for therapy.

Comparative proteomics and global genome-wide expression data implicate role of ARMC8 in lung cancer

  • Amin, Asif;Bukhari, Shoiab;Mokhdomi, Taseem A;Anjum, Naveed;Wafai, Asrar H;Wani, Zubair;Manzoor, Saima;Koul, Aabid M;Amin, Basit;Qurat-ul-Ain, Qurat-ul-Ain;Qazi, Hilal;Tyub, Sumira;Lone, Ghulam Nabi;Qadri, Raies A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3691-3696
    • /
    • 2015
  • Background: Cancer loci comprise heterogeneous cell populations with diverse cellular secretions. Therefore, disseminating cancer-specific or cancer-associated protein antigens from tissue lysates could only be marginally correct, if otherwise not validated against precise standards. Materials and Methods: In this study, 2DE proteomic profiles were examined from lysates of 13 lung-adenocarcinoma tissue samples and matched against the A549 cell line proteome. A549 matched-cancer-specific hits were analyzed and characterized by MALDI-TOF/MS. Results: Comparative analysis identified a total of 13 protein spots with differential expression. These proteins were found to be involved in critical cellular functions regulating pyrimidine metabolism, pentose phosphate pathway and integrin signaling. Gene ontology based analysis classified majority of protein hits responsible for metabolic processes. Among these, only a single non-predictive protein spot was found to be a cancer cell specific hit, identified as Armadillo repeat-containing protein 8 (ARMC8). Pathway reconstruction studies showed that ARMC8 lies at the centre of cancer metabolic pathways. Conclusions: The findings in this report are suggestive of a regulatory role of ARMC8 in control of proliferation and differentiation in lung adenocarcinomas.

Radioprotective effects of delphinidin on normal human lung cells against proton beam exposure

  • Kim, Hyun Mi;Kim, Suk Hee;Kang, Bo Sun
    • Nutrition Research and Practice
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Exposure of the normal lung tissue around the cancerous tumor during radiotherapy causes serious side effects such as pneumonitis and pulmonary fibrosis. Radioprotectors used during cancer radiotherapy could protect the patient from side effects induced by radiation injury of the normal tissue. Delphinidin has strong antioxidant properties, and it works as the driving force of a radioprotective effect by scavenging radiation-induced reactive oxygen species (ROS). However, no studies have been conducted on the radioprotective effect of delphinidin against high linear energy transfer radiation. Therefore, this study was undertaken to evaluate the radioprotective effects of delphinidin on human lung cells against a proton beam. MATERIALS/METHODS: Normal human lung cells (HEL 299 cells) were used for in vitro experiments. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay assessed the cytotoxicity of delphinidin and cell viability. The expression of radiation induced cellular ROS was measured by the 2'-7'-dicholordihydrofluorescein diacetate assay. Superoxide dismutase activity assay and catalase activity assay were used for evaluating the activity of corresponding enzymes. In addition, radioprotective effects on DNA damage-induced cellular apoptosis were evaluated by Western blot assay. RESULTS: Experimental analysis, including cell survival assay, MTT assay, and Western blot assay, revealed the radioprotective effects of delphinidin. These include restoring the activities of antioxidant enzymes of damaged cells, increase in the levels of pro-survival protein, and decrease of pro-apoptosis proteins. The results from different experiments were compatible with each to provide a substantial conclusion. CONCLUSION: Low concentration ($2.5{\mu}M/mL$) of delphinidin administration prior to radiation exposure was radioprotective against a low dose of proton beam exposure. Hence, delphinidin is a promising shielding agent against radiation, protecting the normal tissues around a cancerous tumor, which are unintentionally exposed to low doses of radiation during proton therapy.

Osteopontin Potentiates Pulmonary Inflammation and Fibrosis by Modulating IL-17/IFN-γ-secreting T-cell Ratios in Bleomycin-treated Mice

  • Oh, Keunhee;Seo, Myung Won;Kim, Young Whan;Lee, Dong-Sup
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.142-149
    • /
    • 2015
  • Lung fibrosis is a life-threatening disease caused by overt or insidious inflammatory responses. However, the mechanism of tissue injury-induced inflammation and subsequent fibrogenesis remains unclear. Recently, we and other groups reported that Th17 responses play a role in amplification of the inflammatory phase in a murine model induced by bleomycin (BLM). Osteopontin (OPN) is a cytokine and extracellular-matrix-associated signaling molecule. However, whether tissue injury causes inflammation and consequent fibrosis through OPN should be determined. In this study, we observed that BLM-induced lung inflammation and subsequent fibrosis was ameliorated in OPNdeficient mice. OPN was expressed ubiquitously in the lung parenchymal and bone-marrow-derived components and OPN from both components contributed to pathogenesis following BLM intratracheal instillation. Th17 differentiation of $CD4^+$ ${\alpha}{\beta}$ T cells and IL-17-producing ${\gamma}{\delta}$ T cells was significantly reduced in OPN-deficient mice compared to WT mice. In addition, Th1 differentiation of $CD4^+$ ${\alpha}{\beta}$ T cells and the percentage of IFN-$\gamma$-producing ${\gamma}{\delta}$ T cells increased. T helper cell differentiation in vitro revealed that OPN was preferentially upregulated in $CD4^+$ T cells under Th17 differentiation conditions. OPN expressed in both parenchymal and bone marrow cell components and contributed to BLM-induced lung inflammation and fibrosis by affecting the ratio of pathogenic IL-17/protective IFN-$\gamma$ T cells.

Preliminary assessment of correlation between T-lymphocyte responses and control of porcine reproductive and respiratory syndrome virus (PRRSV) in piglets born after in-utero infection of a type 2 PRRSV

  • Cha, Sang-Ho;Bandaranayaka-Mudiyanselage, Carey;Bandaranayaka-Mudiyanselage, Chandima B.;Ajiththos, Dharani;Yoon, Kyoung-Jin;Gibson, Kathleen A.;Yu, Ji-Eun;Cho, In-Soo;Lee, Stephen S.;Chung, Chungwon J.
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • A preliminary study into the protective mechanisms of adaptive immunity against porcine reproductive and respiratory syndrome virus (PRRSV) in piglets (n = 9) born to a gilt challenged intranasally with a type-2 PRRSV. Immune parameters (neutralizing antibodies, $CD3^+CD4^+$, $CD3^+CD8^+$, $CD3^+CD4^+CD8^+$ T-lymphocytes, and PRRSV-specific interferon $(IFN)-{\gamma}$ secreting T-lymphocytes) were compared with infection parameters (macro- and microscopic lung lesion, and PRRSV-infected porcine alveolar macrophages ($CD172{\alpha}^+PRRSV-N^+\;PAM$) as well as with plasma and lymphoid tissue viral loads. Percentages of three T-lymphocyte phenotypes in 14-days post-birth (dpb) peripheral blood mononuclear cell (PBMC) had significant negative correlations with percentages of $CD172{\alpha}^+PRRSV-N^+\;PAM$ (p < 0.05) as well as with macroscopic lung lesion (p < 0.01). Plasma and tissue viral loads had significant (p < 0.05) negative correlations with $CD3^+CD4^+CD8^+$ T-lymphocyte percentage in PBMC. Frequencies of $CD3^+CD8^+$ and $CD3^+CD4^+$ T-lymphocytes in 14-dpb PBMC had significant negative correlations with of lymph node (p = 0.04) and lung (p = 0.002) viral loads. $IFN-{\gamma}$-secreting T-lymphocytes frequency had a significant negative correlation with gross lung lesion severity (p = 0.002). However, neutralizing antibody titers had no significant negative correlation (p > 0.1) with infection parameters. The results indicate that T-lymphocytes contribute to controlling PRRSV replication in young piglets born after in-utero infection.

Trace Element Analysis by Neutron Activastion Analysis in the Human Cancer Tissue (폐암조직에서 중성자 방사화 분석법을 이용한 미량 원소 분석)

  • Lim, Sang-Moo;Zo, Jae-Il;Shim, Young-Mog;Chung, Young-Ju;Cho, Seung-Yeon;Chung, Yong-Sam
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.104-111
    • /
    • 1993
  • Trace elements are important components in the biological system, as a structural material and metabolic controller. Neutron activation analysis (NAA) with high neutron flux and high energy resolution Ge (Li) detector coupled to multichannel analyzer (MCA) has been one of the most accurate method for the determination of ultra-trace level components, and is applicable to biological material. In human body, the NAA can be used for quantitation of trace elements in various organs and tissue with endocrinological and metabolic disease and industrial metal poisoning. In this study, Triga Mark III nuclear reactor in Korea Atomic Research Institute was used for quantitation of trace eleement in human lung cancer tissues by neutron activation analysis. In the squamous cell carcinoma tissues, Br, Hg, La, Sb, Sc, Cl, Fe and I content were lower than normal lung tissues, and K, Rb and Se content were higher. In the adenocarcinoma tissues, Fe, Au, La, Sc and Zn content were lower than normal lung tissues, and Rb, Co and Se content were higher. Rb content was higher in the adenocarcinoma tissues than in the squamous cell carcinoma tissues. Fe and Na content were higher in the squamous cell carcinoma tissues than in the adenocarcinoma tissues.

  • PDF