• Title/Summary/Keyword: Lung segmentation

Search Result 44, Processing Time 0.024 seconds

Comparison of SUV for PET/MRI and PET/CT (인체 각 부위의 PET/MRI와 PET/CT의 SUV 변화)

  • Kim, Jae Il;Jeon, Jae Hwan;Kim, In Soo;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.10-14
    • /
    • 2013
  • Purpose: Due to developed simultaneous PET/MRI, it has become possible to obtain more anatomical image information better than conventional PET/CT. By the way, in the PET/CT, the linear absorption coefficient is measured by X-ray directly. However in case of PET/MRI, the value is not measured from MRI images directly, but is calculated by dividing as 4 segmentation ${\mu}-map$. Therefore, in this paper, we will evaluate the SUV's difference of attenuation correction PET images from PET/MRI and PET/CT. Materials and Methods: Biograph mCT40 (Siemens, Germany), Biograph mMR were used as a PET/CT, PET/MRI scanner. For a phantom study, we used a solid type $^{68}Ge$ source, and a liquid type $^{18}F$ uniformity phantom. By using VIBE-DIXON sequence of PET/MRI, human anatomical structure was divided into air-lung-fat-soft tissue for attenuation correction coefficient. In case of PET/CT, the hounsfield unit of CT was used. By setting the ROI at five places of each PET phantom images that is corrected attenuation, the maximum SUV was measured, evaluated %diff about PET/CT vs. PET/MRI. In clinical study, the 18 patients who underwent simultaneous PET/CT and PET/MRI was selected and set the ROI at background, lung, liver, brain, muscle, fat, bone from the each attenuation correction PET images, and then evaluated, compared by measuring the maximum SUV. Results: For solid $^{68}Ge$ source, SUV from PET/MRI is measured lower 88.55% compared to PET/CT. In case of liquid $^{18}F$ uniform phantom, SUV of PET/MRI as compared to PET/CT is measured low 70.17%. If the clinical study, the background SUV of PET/MRI is same with PET/CT's and the one of lung was higher 2.51%. However, it is measured lower about 32.50, 40.35, 23.92, 13.92, 5.00% at liver, brain, muscle, fat, femoral head. Conclusion: In the case of a CT image, because there is a linear relationship between 511 keV ${\gamma}-ray$ and linear absorption coefficient of X-ray, it is possible to correct directly the attenuation of 511 keV ${\gamma}-ray$ by creating a ${\mu}$map from the CT image. However, in the case of the MRI, because the MRI signal has no relationship at all with linear absorption coefficient of ${\gamma}-ray$, the anatomical structure of the human body is divided into four segmentations to correct the attenuation of ${\gamma}-rays$. Even a number of protons in a bone is too low to make MRI signal and to localize segmentation of ${\mu}-map$. Therefore, to develope a proper sequence for measuring more accurate attenuation coefficient is indeed necessary in the future PET/MRI.

  • PDF

A Study on the Segmentation of Lung Region using Competitive Recurrent Neural Network (경쟁 순환 신경망을 이용한 폐 영역분할에 관한 연구)

  • Kim, Bo-Yeon;Park, Gwang-Seok;Hwang, Hui-Yung
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.65-68
    • /
    • 1992
  • 흉부 X선 영상을 판독함에 있어서 중요한 정보중의 하나로 폐실질의 조직 특성이 이용된다. X선 영상에서 뼈 혹은 심장, 굵은 혈관등은 X선의 투과율이 적어 시각적으로 밝고 균일한 재질로 나타나며, 공기가 채워져 있는 폐실질은 어둡고 산소/이산화탄소 교환에 관계되는 미세한 조직들에 따라 균일하지 않은 재질로 나타나는 특성을 보이고 있다. 본 연구에서는 공간적인 주위조직의 경보를 이영하여 현지의 부분을 예측하여 인식하도록 수정된 경쟁 순환 신경망을 이용하여 흉부 X선 영상에서의 순수한 폐실질 부위를 영역 분할한다.

  • PDF

Hardware-based Level Set Method for Fast Lung Segmentation and Visualization (빠른 폐 분할과 가시화를 위한 그래픽 하드웨어 기반 레벨-셋 방법)

  • Park Seong-Jin;Hong He-Len;Shin Yeong-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.268-270
    • /
    • 2006
  • 본 논문에서는 3차원 볼륨영상에서 객체를 빠르게 분할하고 동시에 대화식으로 분할과정을 가시화하기 위하여 그래픽 하드웨어를 사용한 레벨-셋 방법을 제안한다. 이를 위하여 첫째, GPU 내에서 효율적 연산을 수행하기 위해 메모리 관리방법을 제안한다. 이는 GPU 내 텍스쳐 메모리 형식에 적합하게 데이터를 패킹하고, CPU의 주메모리와 GPU의 텍스쳐 메모리를 관리하는 방법을 제시한다. 둘째, GPU 내에서 레벨-셋 값을 갱신하는 과정을 9가지 경우로 나누어 연산을 수행하게 함으로써 연산의 효율성을 높힌다. 셋째, front의 변화를 대화식으로 확인하고, 파라미터 변경에 따른 분할 과정을 효과적으로 측정하기 위하여 그래픽 하드웨어 기반 빠른 가시화 방법을 제안한다. 본 논문에서는 제안방법을 평가하기 위하여 3차원 폐 CT 영상데이터를 사용하여 육안평가를 수행하고, 기존 소프트웨어 기반 레벨-셋 방법과 수행시간 측면에서 비교 분석한다. 본 제안방법은 소프트웨어 기반 레벨-셋 방법보다 빠르게 영상을 분할하고 동시에 가시화함으로써 데이터 량이 많은 의료응용에 효율적으로 적용이 가능하다.

  • PDF

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.

Evaluation of Deep-Learning Feature Based COVID-19 Classifier in Various Neural Network (코로나바이러스 감염증19 데이터베이스에 기반을 둔 인공신경망 모델의 특성 평가)

  • Hong, Jun-Yong;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.397-404
    • /
    • 2020
  • Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.

A Novel Method for Automated Honeycomb Segmentation in HRCT Using Pathology-specific Morphological Analysis (병리특이적 형태분석 기법을 이용한 HRCT 영상에서의 새로운 봉와양폐 자동 분할 방법)

  • Kim, Young Jae;Kim, Tae Yun;Lee, Seung Hyun;Kim, Kwang Gi;Kim, Jong Hyo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • Honeycombs are dense structures that small cysts, which generally have about 2~10 mm in diameter, are surrounded by the wall of fibrosis. When honeycomb is found in the patients, the incidence of acute exacerbation is generally very high. Thus, the observation and quantitative measurement of honeycomb are considered as a significant marker for clinical diagnosis. In this point of view, we propose an automatic segmentation method using morphological image processing and assessment of the degree of clustering techniques. Firstly, image noises were removed by the Gaussian filtering and then a morphological dilation method was applied to segment lung regions. Secondly, honeycomb cyst candidates were detected through the 8-neighborhood pixel exploration, and then non-cyst regions were removed using the region growing method and wall pattern testing. Lastly, final honeycomb regions were segmented through the extraction of dense regions which are consisted of two or more cysts using cluster analysis. The proposed method applied to 80 High resolution computed tomography (HRCT) images and achieved a sensitivity of 89.4% and PPV (Positive Predictive Value) of 72.2%.

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF

Prognostic Implication of Volumetric Quantitative CT Analysis in Patients with COVID-19: A Multicenter Study in Daegu, Korea

  • Byunggeon Park;Jongmin Park;Jae-Kwang Lim;Kyung Min Shin;Jaehee Lee;Hyewon Seo;Yong Hoon Lee;Jun Heo;Won Kee, Lee;Jin Young Kim;Ki Beom Kim;Sungjun Moon;Sooyoung, Choi
    • Korean Journal of Radiology
    • /
    • v.21 no.11
    • /
    • pp.1256-1264
    • /
    • 2020
  • Objective: Lung segmentation using volumetric quantitative computed tomography (CT) analysis may help predict outcomes of patients with coronavirus disease (COVID-19). The aim of this study was to investigate the relationship between CT volumetric quantitative analysis and prognosis in patients with COVID-19. Materials and Methods: CT images from patients diagnosed with COVID-19 from February 18 to April 15, 2020 were retrospectively analyzed. CT with a negative finding, failure of quantitative analysis, or poor image quality was excluded. CT volumetric quantitative analysis was performed by automated volumetric methods. Patients were stratified into two risk groups according to CURB-65: mild (score of 0-1) and severe (2-5) pneumonia. Outcomes were evaluated according to the critical event-free survival (CEFS). The critical events were defined as mechanical ventilator care, ICU admission, or death. Multivariable Cox proportional hazards analyses were used to evaluate the relationship between the variables and prognosis. Results: Eighty-two patients (mean age, 63.1 ± 14.5 years; 42 females) were included. In the total cohort, male sex (hazard ratio [HR], 9.264; 95% confidence interval [CI], 2.021-42.457; p = 0.004), C-reactive protein (CRP) (HR, 1.080 per mg/dL; 95% CI, 1.010-1.156; p = 0.025), and COVID-affected lung proportion (CALP) (HR, 1.067 per percentage; 95% CI, 1.033-1.101; p < 0.001) were significantly associated with CEFS. CRP (HR, 1.164 per mg/dL; 95% CI, 1.006-1.347; p = 0.041) was independently associated with CEFS in the mild pneumonia group (n = 54). Normally aerated lung proportion (NALP) (HR, 0.872 per percentage; 95% CI, 0.794-0.957; p = 0.004) and NALP volume (NALPV) (HR, 1.002 per mL; 95% CI, 1.000-1.004; p = 0.019) were associated with a lower risk of critical events in the severe pneumonia group (n = 28). Conclusion: CRP in the mild pneumonia group; NALP and NALPV in the severe pneumonia group; and sex, CRP, and CALP in the total cohort were independently associated with CEFS in patients with COVID-19.

Objective and Quantitative Evaluation of Image Quality Using Fuzzy Integral: Phantom Study (퍼지적분을 이용한 영상품질의 객관적이고 정량적 평가: 팬톰 연구)

  • Kim, Sung-Hyun;Suh, Tae-Suk;Choe, Bo-Young;Lee, Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.201-208
    • /
    • 2008
  • Physical evaluations provide the basis for an objective and quantitative analysis of the image quality. Nonetheless, there are limitations in using physical evaluations to judge the utility of the image quality if the observer's subjectivity plays a key role despite its imprecise and variable nature. This study proposes a new method for objective and quantitative evaluation of image quality to compensate for the demerits of both physical and subjective image quality and combine the merits of them. The images of chest phantom were acquired from four digital radiography systems on clinic sites. The physical image quality was derived from an image analysis algorithm in terms of the contrast-to-noise ratio (CNR) of the low-contrast objects in three regions (lung, heart, and diaphragm) of a digital chest phantom radiograph. For image analysis, various image processing techniques were used such as segmentation, and registration, etc. The subjective image quality was assessed by the ability of the human observer to detect low-contrast objects. Fuzzy integral was used to integrate them. The findings of this study showed that the physical evaluation did not agree with the subjective evaluation. The system with the better performance in physical measurement showed the worse result in subjective evaluation compared to the other system. The proposed protocol is an integral evaluation method of image quality, which includes the properties of both physical and subjective measurement. It may be used as a useful tool in image evaluation of various modalities.

  • PDF

Development of Medical Image Processing Algorithm for Clinical Decision Support System Applicable to Patients with Cardiopulmonary Function (심폐기능 재활환자용 임상의사결정지원시스템을 위한 의료영상 처리 기술 개발)

  • Park, H.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2015
  • Chest X-ray images is the most common and widely used in clinical findings for a wide range of anatomical information about the prognosis of the disease in patients with cardiopulmonary rehabilitation. Many analysis algorithm was developed by a number of studies regarding the region segmentation and image analysis, there are specific differences due to the complexity and diversity of the image. In this paper, a diagnosis support system of the chest X-ray image based on image processing and analysis methods to detect the cardiopulmonary disease. The threshold value and morphological method was applied to segment the pulmonary region in a chest X-ray image. Anatomical measurements and texture analysis was performed on the segmented regions. The effectiveness of the proposed method is shown through experiments and comparison with diagnosis results by clinical experts to show that the proposed method can be used for decision support system.

  • PDF