• Title/Summary/Keyword: Lung scan

Search Result 366, Processing Time 0.027 seconds

Use of Quantitative CT to Predict Postoperative Lung Function (Comparison of Quantitative CT and Perfusion Lung Scan) (폐절제술후의 폐기능 예측에 대한 나선식 정량적 CT의 유용성 (나선식 정량적 CT와 폐관류스캔과의 비교))

  • 이조한
    • Journal of Chest Surgery
    • /
    • v.33 no.10
    • /
    • pp.798-805
    • /
    • 2000
  • Background : the prediction on changes in the lung function after lung surgery would be an important indicator in terms of the operability and postoperative complications. In order to predict the postoperative FEV1 - the commonly used method for measuring changes in lung function- a comparison between the quantitative CT and the perfusion lung scan was made and proved its usefulness. Material and Method : The subjects included 22 patients who received perfusion lung scan and quantitative CT preoperatively and with whom the follow-up of PFT were possibles out of the pool of patients who underwent right lobectomy or right pneumonectomy between June of 1997 and December of 1999. The FEV1 and FVC were calibrated by performing the PFT on each patient and then the predicted FEV1 and FVC were calculated after performing perfusion lung scan and quantitative CT postoperatively. The FEV1 and FVC were calibrated by performing the PFT after 1 week and after 3 momths following the surgery. Results : There was a significant mutual scan and the actual postoperative FEV1 and FVC at 1 week and 3 months. The predicted FEV1 and FVC(pneumonectomy group : r=0.962 and r=0.938 lobectomy group ; r=0.921 and r=913) using quantitative CT at 1 week postoperatively showed a higher mutual relationship than that predicted by perfusion lung scan(pneumonectomy group : r=0.927 and r=0.890 lobectomy group : r=0.910 and r=0.905) The result was likewise at 3 months postoperatively(CT -pneumonectomy group : r=0.799 and r=0.882 lobectomy group : r=0.934 and r=0.932) Conclusion ; In comparison to perfusion lung scan quantitative CT is more accurate in predicting lung function postoperatively and is cost-effective as well. Therefore it can be concluded that the quantitative CT is an effective method of replacing the perfusion lung scan in predicting lung function post-operatively. However it is noted that further comparative analysis using more data and follow-up studies of the patients is required.

  • PDF

Hot Spots on Tc-99m MAA Perfusion Lung Scan (Tc-99m 거대응집알부민을 이용한 폐관류 스캔에서 관찰되는 다발성 열소)

  • Lim, Seok-Tae;Sohn, Myung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.4
    • /
    • pp.288-290
    • /
    • 2001
  • A 61 year-old woman underwent perfusion and inhalation lung scan for the evaluation of pulmonary thromboembolism. Tc-99m MAA perfusion lung scan showed multiple round hot spots in both lung fields. Tc-99m DTPA aerosol inhalation lung scan and chest radiography taken at the same time showed normal findings (Fig. 1, 2). A repeated perfusion lung scan taken 24 hours later demonstrated no abnormalities (Fig. 3). Hot spots on perfusion lung scan can be caused by microsphere clumping due to faulty injection technique or by radioactive embolization from upper extremity thrombophlebitis after injection. Focal hot spots can signify zones of atelectasis, where the hot spots probably represent a failure of hypoxic vasoconstriction. Artifactual hot spots due to microsphere clumping usually appear to be round and in peripheral location, and the lesions due to a loss of hypoxic vasoconstriction usually appear to be hot uptakes having linear $borders^{1-3)}$. Although these artifactual hot spots have been well-known, we rarely encounter them. This report presents a case with artifactual hot spots due to microsphere clumping on Tc-99m MAA perfusion lung scan.

  • PDF

Evaluation of the Predictive Pulmonary Function after Pneumonectomy Using Perfusion Lung Scan (전폐절제술시 폐관류스캔을 이용한 폐기능의 예측에 대한 평가)

  • Kim, Gil-Dong;Jeong, Gyeong-Yeong
    • Journal of Chest Surgery
    • /
    • v.28 no.4
    • /
    • pp.371-375
    • /
    • 1995
  • Surgical resection of lung cancer or other disease is recently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease or disease extension. So prediction of pulmonary function after lung resection is very important in thoracic surgeon. We studied the accuracy of the prediction of postoperative pulmonary function using perfusion lung scan with 99m technetium macroaggregated albumin in 22 patients who received the pneumonectomy. The linear regression line derived from correlation between predicting[X and postoperative measured[Y values of FEV1 and FVC in patients are as follows: 1 Y[ml =0.713X + 381 in FEV1 [r=0.719 ,[P<0.01 2 Y[ml =0.645X + 556 in FVC [r=0.675 ,[P<0.01 In conclusion,the perfusion lung scan is noninvasive and very accurate for predicting postpneumonectomy pulmonary function.

  • PDF

$^{99m}TC-MAA$ Pulmonary Perfusion Scan in the Canine Single Luhg Transplant (개에서 시행한 한쪽 이식 폐의 $^{99m}TC-MAA$ 관류스캔)

  • Zeon, S.K.;Ryu, J.G.;Park, C.K.;Yoo, Y.S.;Jung, D.S.;Lee, J.K.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.3
    • /
    • pp.365-371
    • /
    • 1997
  • The aim of this study is to evaluate the efficiency of the pulmonary perfusion scan(Pp scan) in the experimental animal single lung transplantation. Eight left lung transplanted mongrel dogs were included in this study. The serial Pp scan with 111MBq $^{99m}TC-MAA$ were done at the periods of immediate postoperative period, POD 3 days, and POD 10-14 days and finally autopsy was done in each cases. The transplanted lung perfusion was analysed as a percentage radioactivity of trans planted/native lung(T/N) ratio. The Pp scan of a donor mongrel dog was used as a reference(left/right lung (T/N) ratio 85.2%). The average T/N ratio of all cases on immediate postoperative state(reperfusion injury) : 19.2%, three acute rejections. 12.6%, three bronchial dehiscences 6.1% and two pulmonary thromboses : 2.0%. Two cases showed moderate improvement of reperfusion injury as increasing the T/N ratio in POD 3 days Pp scan. The T/N ratio showed sequentially decreased in six cases. As a conclusion, the Pp scan could be a non-invasive method in the evaluation of the experimental one-lung transplanted mongrel dog.

  • PDF

Diagnostic Value of Pulmonary Perfusion Scan in Patients of Airway Foreign Body (기관지 이물 환자에서 폐장관류주사(pulmonary perfusion scan)의 적용 의의)

  • 최종욱;정광윤;민헌기;황찬승;김혜정
    • Korean Journal of Bronchoesophagology
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 1995
  • To evaluate the diagnostic value of pulmonary perfusion scan, we obtained 99mTc MAA per-fusion lung scan from 25 cases of airway foreign bodies. The results were as follows. 1) Significant changes in blood gases were not observed after the establishment of regional hypoperfusion caused by airway foreign body. 2) Near total or total defect was noted on perfusion scan from most of the airway foreign body. 3) There was correspondance of findings of perfusion lung scan and duration of airway foreign body. 4) After the removal of airway foreign bodies, perfusion scan abnormalities were reversed in parallel with the recovery of pulmonary blood flow. We concluded that pulmonary perfusion scan may be valuable for detection of foreign body and reversible hypoperfusion.

  • PDF

Clinical Significance of $^{99m}Tc-DPTA$ Ventilation Scan in Patient with Bronchiectasis (기관지확장증 환자에서 환기 폐주사의 임상적 의의)

  • Park, Choon-Sik;Paek, Sung-Ho;Uh, Soo-Taek;Na, Hyun;Choi, Deuk-Lin;Kim, Gi-Jeong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.19 no.2
    • /
    • pp.57-63
    • /
    • 1985
  • To evaluate the clinical significance of lung ventilation scan using $^{99m}Tc-DTPA$ in patient with bronchiectasis, we compared the involovement area of bronchogram and lung ventilation scan according to lobar and segmental distribution. There were no correlation between impairment of pulmonary function test and the number of bronchiectatic lobe and segment(p>0.5). Lung ventilation scan showed 66.7% of sensivity, 100% of specificity, ana 91.7% of accuracy according to lobar distribution, and 51.9% of sensivity, 96.9% of specificity, and 88.9% of accuracy according to segmental distribution. These results suggest that lung ventilation scan can be used as diagnostic tool in patient with bronchiectasis in whom bronchogram is not tolerable.

  • PDF

A Dual Lung Scan for the Evaluation of Pulmonary Function in Patients with Pulmonary Tuberculosis before and after Treatment (폐결핵치료전후(肺結核治療前後) 방사성동위원소(放射性同位元素)스캔에 의(依)한 폐기능(肺機能)의 비교(比較))

  • Rhee, Chong-Heon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.2
    • /
    • pp.1-25
    • /
    • 1967
  • In 20 normal cases and 39 pulmonary tuberculosis cases, regional pulmonary arterial blood flow measurements and lung perfusion scans by $^{131}I$-Macroaggregated albumin, lung inhalation scans by colloidal $^{198}Au$ and spirometries by respirometer were done at the Radiological Research Institute. The measured lung function tests were compared and the results were as the following: 1. The normal distribution of pulmonary blood flow was found to be $54.5{\pm}2.82%$ to the right lung and $45.5{\pm}2.39%$ to the left lung. The difference between the right and left pulmonary arterial blood flow was significant statistically (p<0.01). In the minimal pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be $52.5{\pm}5.3%$ to the right lung and $47.5{\pm}1.0%$ to the left lung when the tuberculous lesion was in the right lung, and $56.2{\pm}4.4%$ to the right lung and $43.8{\pm}3.1%$ to the left lung when the tuberculous lesion was in the left lung. The difference of pulmonary arterial blood flow between the right and left lung was statistically not significant compared with the normal distribution. In the moderately advanced pulmonary tuberculosis, the average distripution of pulmonary arterial blood flow was found to be $26.9{\pm}13.9%$ to the right lung and $73.1{\pm}13.9%$ to the left lung when the tuberculous lesion was more severe in the right lung, and $79.6{\pm}12.8%$ to the right lung and $20.4{\pm}13.0%$ to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved, the average distribution of pulmonary arterial blood flow was found to be $49.5{\pm}8.01%$ to the right lung and $50.5{\pm}8.01%$ to the left lung. In the far advanced pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be $18.5{\pm}11.6%$ to the right lung and $81.5{\pm}9.9%$ to the left lung when the tuberculous lesion was more severe in the right lung, and $78.2{\pm}8.9%$ to the right lung and $21.8{\pm}10.5%$ to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved the average distribution of pulmonary arterial blood flow was found to be $56.0{\pm}3.6%$ to the right lung and $44.0{\pm}3.2%$ to the left lung. 2. Lung perfusion scan by $^{131}I$-MAA in patients with pulmonary tuberculosis was as follows: a) In the pretreated minimal pulmonary tuberculosis, the decreased area of pulmonary arterial blood flow was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive than had been expected from the chest roentgenogram in the apparently healed minimal pulmonary tuberculosis. b) In the pretreated moderately advanced pulmonary tuberculosis, the decrease of pulmonary arterial blood flow to the diseased area was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive in the treated moderately advanced pulmonary tuberculosis as in the treated minimal pulmonary tuberculosis. c) Pulmonary arterial blood flow in the patients with far advanced pulmonary tuberculosis both before and after chemotherapy were almost similar to the chest roentgenogram. Especially the decrease of pulmonary arterial blood flow to the cavity was usually greater than had been expected from the chest roentgenogram. 3. Lung inhalation scan by colloidal $^{198}Au$ in patients with pulmonary tuberculosis was as follows: a) In the minimal pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram. b) In the moderately advanced pulmonary tuberculosis the decrease of radioactivity in the diseased area was partly corresponding to the chest roentgenogram in one hand and on the other hand the radioactivity was found to be normally distributed in stead of tuberculous lesion in the chest roentgenogram. c) In the far advanced pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram as in the minimal pulmonary tuberculosis. 4. From all these results, it was found that the characteristic finding in pulmonary tuberculosis was a decrease in pulmonary arterial blood flow to the diseased area and in general decrease of pulmonary arterial blood flow to the diseased area was more extensive than had been expected from the chest roentgenogram, especially in the treated group. Lung inhalation scan showed almost similar distribution of radioactivity corresponding to the chest roentgenogram in minimal and far advanced pulmonary tuberculosis, but there was a variability in the moderately advanced pulmonary tuberculosis. The measured values obtained from spirometry were parallel to the tuberculous lesion in chest roentgenogram.

  • PDF

Performance testing of a FastScan whole body counter using an artificial neural network

  • Cho, Moonhyung;Weon, Yuho;Jung, Taekmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3043-3050
    • /
    • 2022
  • In Korea, all nuclear power plants (NPPs) participate in annual performance tests including in vivo measurements using the FastScan, a stand type whole body counter (WBC), manufactured by Canberra. In 2018, all Korean NPPs satisfied the testing criterion, the root mean square error (RMSE) ≤ 0.25, for the whole body configuration, but three NPPs which participated in an additional lung configuration test in the fission and activation product category did not meet the criterion. Due to the low resolution of the FastScan NaI(Tl) detectors, the conventional peak analysis (PA) method of the FastScan did not show sufficient performance to meet the criterion in the presence of interfering radioisotopes (RIs), 134Cs and 137Cs. In this study, we developed an artificial neural network (ANN) to improve the performance of the FastScan in the lung configuration. All of the RMSE values derived by the ANN satisfied the criterion, even though the photopeaks of 134Cs and 137Cs interfered with those of the analytes or the analyte photopeaks were located in a low-energy region below 300 keV. Since the ANN performed better than the PA method, it would be expected to be a promising approach to improve the accuracy and precision of in vivo FastScan measurement for the lung configuration.

전산화 폐관류주사를 이용한 폐절제술후 폐기능의 예측

  • Oh, Duck-Jin;Lee, Young;Lim, Seung-Pyeung;Yu, Jae-Hyun;Na, Myung-Hoon
    • Journal of Chest Surgery
    • /
    • v.29 no.8
    • /
    • pp.897-904
    • /
    • 1996
  • A preoperative prediction of postoperative pulmonary function after the pulmonary resection should be made to prevent serious complications and postoperative mortality. There are several methods to predict postoperative lung function but the 99m7c-MAA perfusion lung scan is known as simple, inexpensive and easily tolerated method for patients. We studied the accuracy of the perfusion lung scan in predicting postoperative lung function on 34 patients who received either the resection of one lobe(17 patients) or 2 lobes(2 patients) or pneumonictomy(15 patients). We performed pulmonary function test and lung scan immediately before the operation and calculated the postoperative lung function by substracting the regional lung function which will be rejected. We compared this predictive value to the observed pulmonary function which was done 20 days after the surgery. We also compared the data achieved from 12 patients ho received open thoracotomy due to intrathoracic disease that are not confined in the lung. The correlation coefficient between the predicted value and observed value of FEVI .0 was 0.423, FVC was 0.557 in the pneumonectomy group and FEVI . 0 was 0.693, FVC was 0.591 in the lobectomy group. The correlation coefnclent between the'postoperative value and preoperative value of FEVI .0 was 0.528, FVC was 0.502 in the resectional group and FEVI .0 was 0.871, FVC was 0.896 in the comparatives. We concluded that the perfusion lung scan is accllrate in predicting post-resectional pulmonary function.

  • PDF

Comparison of Inhalation Scan and Perfusion Scan for the Prediction of Postoperative Pulmonary Function (수술후 폐기능 변화의 예측에 대한 연무 흡입스캔과 관류스캔의 비교)

  • Cheon, Young-Kug;Kwak, Young-Im;Yun, Jong-Gil;Zo, Jae-Ill;Shim, Young-Mog;Lim, Sang-Moo;Hong, Sung-Woon;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.2
    • /
    • pp.111-119
    • /
    • 1994
  • Background: Because of the common etiologic factor, such as smoking, lung cancer and chronic obstructive pulmonary disease are often present in the same patient. The preoperative prediction of remaining pulmonary function after the resectional surgery is very important to prevent serious complication and postoperative respiratory failure. $^{99m}Tc$-MAA perfusion scan has been used for the prediction of postoperative pulmonary function, but it may be inaccurate in case of large V/Q mismatching. We compared $^{99m}Tc$-DTPA radioaerosol inhalation scan with $^{99m}Tc$-MAA perfusion scan in predicting postoperative lung function. Method: Preoperative inhalation scan and/or perfusion scan were performed and pulmonary function test were performed preoperatively and 2 month after operation. We predicted the postoperative pulmonary functions using the following equations. Postpneurnonectomy $FEV_1$=Preop $FEV_1x%$ of total function of lung to remain Postlobectomy $FEV_1$=Preop $FEV_1{\times}$(% of total 1-function of affected lung${\times}$$\frac{Number\;of\;segments\;to\;be\;resected}{Number\;of\;segments\;of\;affected\;lung})$ Results: 1) The inhalation scan showed good correlations between measured and predicted $FEV_1$, FVC and $FEF_{25-75%}$. (correlation coefficiency; 0.94, 0.91, 0.87 respectively). 2) The perfusion scan also showed good correlations between measured and predicted $FEV_1$, FVC and $FEF_{25-75%}$. (correlation coefficiency; 0.86, 0.72, 0.87 respectively). 3) Among three parameters, $FEV_1$ showed the best correlations in the prediction by lung scans. 4) Comparison between inhalation scan and perfusion scan in predicting pulmonary function did not show any significant differneces except FVC. Conclusion: The inhalation scan and perfusion scan are very useful in the prediction of postoperative lung function and don't make a difference in the prediction of pulmonary function a1though the former showed a better correlation in FVC.

  • PDF