• Title/Summary/Keyword: Lung model

Search Result 692, Processing Time 0.025 seconds

Lung Segmentation Considering Global and Local Properties in Chest X-ray Images (흉부 X선 영상에서의 전역 및 지역 특성을 고려한 폐 영역 분할 연구)

  • Jeon, Woong-Gi;Kim, Tae-Yun;Kim, Sung Jun;Choi, Heung-Kuk;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.829-840
    • /
    • 2013
  • In this paper, we propose a new lung segmentation method for chest x-ray images which can take both global and local properties into account. Firstly, the initial lung segmentation is computed by applying the active shape model (ASM) which keeps the shape of deformable model from the pre-learned model and searches the image boundaries. At the second segmentation stage, we also applied the localizing region-based active contour model (LRACM) for correcting various regional errors in the initial segmentation. Finally, to measure the similarities, we calculated the Dice coefficient of the segmented area using each semiautomatic method with the result of the manually segmented area by a radiologist. The comparison experiments were performed using 5 lung x-ray images. In our experiment, the Dice coefficient with manually segmented area was $95.33%{\pm}0.93%$ for the proposed method. Effective segmentation methods will be essential for the development of computer-aided diagnosis systems for a more accurate early diagnosis and prognosis regarding lung cancer in chest x-ray images.

Pharmacophore Development for Anti-Lung Cancer Drugs

  • Haseeb, Muhammad;Hussain, Shahid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8307-8311
    • /
    • 2016
  • Lung cancer is one particular type of cancer that is deadly and relatively common than any other. Treatment is with chemotherapy, radiation therapy and surgery depending on the type and stage of the disease. Focusing on drugs used for chemotherapy and their associated side effects, there is a need to design and develop new anti-lung cancer drugs with minimal side effects and improved efficacy. The pharmacophore model appears to be a very helpful tool serving in the designing and development of new lead compounds. In this paper, pharmacophore analysis of 10 novel anti-lung cancer compounds was validated for the first time. Using LigandScout the pharmacophore features were predicted and 3D pharmacophores were extracted via VMD software. A training set data was collected from literature and the proposed model was applied to the training set whereby validating and verifying similar activity as that of the most active compounds was achieved. Therefore pharmacophore develoipment could be recommended for further studies.

A Forecasting System for Lung Cancer Sensitivities Using SNP Data

  • Ryoo, Myung-Chun;Kim, Sang-Jin;Park, Chang-Hyeon
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.191-194
    • /
    • 2008
  • SNP(Single Nucleotide Polymorphism) refers to the difference in a base pair existed in DNAs of individuals. Each of it appears per 1,000 bases in human genome and it enables each gene to defer in junctions, interacts with each other to make different shapes of humans, and produces different disease sensitivities. In this paper, we propose a system to forecast lung cancer sensitivities using SNP data related with the lung cancer. A lung cancer sensitivity forecasting model is also constructed through analysis of genetic and non-genetic factors for squamous cell carcinomas, adeno carcinomas, and small cell carcinomas that may frequently appear in Korean. The proposed system with the model gives the probabilities of the onset of lung cancers in the experimental subjects.

  • PDF

Estimating the Survival of Patients With Lung Cancer: What Is the Best Statistical Model?

  • Abedi, Siavosh;Janbabaei, Ghasem;Afshari, Mahdi;Moosazadeh, Mahmood;Alashti, Masoumeh Rashidi;Hedayatizadeh-Omran, Akbar;Alizadeh-Navaei, Reza;Abedini, Ehsan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.2
    • /
    • pp.140-144
    • /
    • 2019
  • Objectives: Investigating the survival of patients with cancer is vitally necessary for controlling the disease and for assessing treatment methods. This study aimed to compare various statistical models of survival and to determine the survival rate and its related factors among patients suffering from lung cancer. Methods: In this retrospective cohort, the cumulative survival rate, median survival time, and factors associated with the survival of lung cancer patients were estimated using Cox, Weibull, exponential, and Gompertz regression models. Kaplan-Meier tables and the log-rank test were also used to analyze the survival of patients in different subgroups. Results: Of 102 patients with lung cancer, 74.5% were male. During the follow-up period, 80.4% died. The incidence rate of death among patients was estimated as 3.9 (95% confidence [CI], 3.1 to 4.8) per 100 person-months. The 5-year survival rate for all patients, males, females, patients with non-small cell lung carcinoma (NSCLC), and patients with small cell lung carcinoma (SCLC) was 17%, 13%, 29%, 21%, and 0%, respectively. The median survival time for all patients, males, females, those with NSCLC, and those with SCLC was 12.7 months, 12.0 months, 16.0 months, 16.0 months, and 6.0 months, respectively. Multivariate analyses indicated that the hazard ratios (95% CIs) for male sex, age, and SCLC were 0.56 (0.33 to 0.93), 1.03 (1.01 to 1.05), and 2.91 (1.71 to 4.95), respectively. Conclusions: Our results showed that the exponential model was the most precise. This model identified age, sex, and type of cancer as factors that predicted survival in patients with lung cancer.

Protective Effects of Mundongcheongpye-eum on Lung Injury Induced by Elastase

  • Nam, Tae-Heung;Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.1042-1052
    • /
    • 2010
  • This study aimed to evaluate the protective effects of Mundongcheongpye-eum (MCE) on elastase-induced lung injury. The extract of MCE was treated to A549 cells and elastase-induced lung injury mice model. Then, various parameters such as cell-based cyto-protective activity and histopathological finding were analyzed. MCE showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B1, Cdc2, and Erk1/2, and gene expression of TNF-${\alpha}$ and IL-$1{\beta}$ in A549 cells. MCE treatment also revealed the protective effect on elastase-induced lung injury in mice model. This effect was evidenced via histopathological finding including immunofluence stains against elastin, collagen, caspase 3, and protein level of cyclin B1, Cdc2, and Erk1/2 in lung tissue. These data suggest that MCE has a pharmaceutical properties on lung injury. This study would provide an scientific evidence for the efficacy of MCE for clinical application to patients with chronic obstructive pulmonary disease.

Effects of Gamicheungpyehwadam-tang on Immune-cell Regulation in Association with Bronchial Asthma in OVA-induced Mouse Model (가미청폐화담탕이 천식 유발 병태 모델에서 천식 관련 활성 면역세포에 미치는 영향)

  • Lim, Dong-Ju;Jeong, Hye-Gwang;Lee, Yong-Gu;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.581-589
    • /
    • 2006
  • These studies were investigated the effects of Gamicheungpyehwadam-tang (CPHDT) on immune-cell regulation in association with bronchial asthma in OVA-induced mouse model. The administration of 400 mg/kg CPHDT significantly reduced the number of total cells in lung, peripheral lymph node and spleen in OVA-induced bronchial asthma mouse model. The administration of 400 mg/kg CPHDT significantly reduced $CD3^+,{\;}CD19^+$and $CD3^+,{\;}CD69^+$ cell numbers separated from lung, peripheral lymph node and spleen in OVA-induced bronchial asthma mouse model. CPHDT significantly reduced $CD3^+/CCR3^+,{\;}CD4^+,{\;}B220^+/IgE^+$, and $CD3^+/DX5^+$ cell numbers separated from lung, peripheral lymph node and spleen in OVA-induced bronchial asthma mouse model in a dose dependent manner, However, CPHDT significantly reduced $CD8^+$ cell numbers from only lung and spleen. The administration of CPHDT significantly reduced $NK^+$ cell numbers separated from lung of OVA-induced bronchial asthma mouse model in all concentrations, but 200 mg/kg CPHDT reduced $NK^+$ cell numbers separated from peripheral lymph node. These results suggest that CPHDT has anti-asthma and anti-allergy effects. In addition to, CPHDT may be useful treatment of asthma based on the further studies about the individual efficacy search of the components of CPHDT and the adding of variety drugs to CPHDT.

Therapeutic Potential of the Rhizomes of Anemarrhena asphodeloides and Timosaponin A-III in an Animal Model of Lipopolysaccharide-Induced Lung Inflammation

  • Park, Byung Kyu;So, Kyung Su;Ko, Hye Jung;Kim, Hyun Joong;Kwon, Ki Sun;Kwon, Yong Soo;Son, Kun Ho;Kwon, Soon Youl;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.553-559
    • /
    • 2018
  • Investigations into the development of new therapeutic agents for lung inflammatory disorders have led to the discovery of plant-based alternatives. The rhizomes of Anemarrhena asphodeloides have a long history of use against lung inflammatory disorders in traditional herbal medicine. However, the therapeutic potential of this plant material in animal models of lung inflammation has yet to be evaluated. In the present study, we prepared the alcoholic extract and derived the saponin-enriched fraction from the rhizomes of A. asphodeloides and isolated timosaponin A-III, a major constituent. Lung inflammation was induced by intranasal administration of lipopolysaccharide (LPS) to mice, representing an animal model of acute lung injury (ALI). The alcoholic extract (50-200 mg/kg) inhibited the development of ALI. Especially, the oral administration of the saponin-enriched fraction (10-50 mg/kg) potently inhibited the lung inflammatory index. It reduced the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Histological changes in alveolar wall thickness and the number of infiltrated cells of the lung tissue also indicated that the saponin-enriched fraction strongly inhibited lung inflammation. Most importantly, the oral administration of timosaponin A-III at 25-50 mg/kg significantly inhibited the inflammatory markers observed in LPS-induced ALI mice. All these findings, for the first time, provide evidence supporting the effectiveness of A. asphodeloides and its major constituent, timosaponin A-III, in alleviating lung inflammation.

Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells

  • Yifan Wang;Hao Wei;Zhen Song;Liqun Jiang;Mi Zhang;Xiao Lu;Wei Li;Yuqing Zhao;Lei Wu;Shuxian Li;Huijuan Shen;Qiang Shu;Yicheng Xie
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.77-88
    • /
    • 2024
  • Background: Lung inflammation occurs in many lung diseases, but has limited effective therapeutics. Ginseng and its derivatives have anti-inflammatory effects, but their unstable physicochemical and metabolic properties hinder their application in the treatment. Panaxadiol (PD) is a stable saponin among ginsenosides. Inhalation administration may solve these issues, and the specific mechanism of action needs to be studied. Methods: A mouse model of lung inflammation induced by lipopolysaccharide (LPS), an in vitro macrophage inflammation model, and a coculture model of epithelial cells and macrophages were used to study the effects and mechanisms of inhalation delivery of PD. Pathology and molecular assessments were used to evaluate efficacy. Transcriptome sequencing was used to screen the mechanism and target. Finally, the efficacy and mechanism were verified in a human BALF cell model. Results: Inhaled PD reduced LPS-induced lung inflammation in mice in a dose-dependent manner, including inflammatory cell infiltration, lung tissue pathology, and inflammatory factor expression. Meanwhile, the dose of inhalation was much lower than that of intragastric administration under the same therapeutic effect, which may be related to its higher bioavailability and superior pharmacokinetic parameters. Using transcriptome analysis and verification by a coculture model of macrophage and epithelial cells, we found that PD may act by inhibiting TNFA/TNFAR and IL7/IL7R signaling to reduce macrophage inflammatory factor-induced epithelial apoptosis and promote proliferation. Conclusion: PD inhalation alleviates lung inflammation and pathology by inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. PD may be a novel drug for the clinical treatment of lung inflammation.

Establishment and evaluation of the VX2 orthotopic lung cancer rabbit model: a ultra-minimal invasive percutaneous puncture inoculation method

  • Wang, Lijuan;Che, Keke;Liu, Zhonghong;Huang, Xianlong;Xiang, Shifeng;Zhu, Fei;Yu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.291-300
    • /
    • 2018
  • The purpose of the present work is to establish an ultra-minimal invasive percutaneous puncture inoculation method for a VX2 orthotopic lung cancer rabbit model with fewer technical difficulties, lower mortality of rabbits, a higher success rate and a shorter operation time, to evaluate the growth, metastasis and apoptosis of tumor by CT scans, necropsy, histological examination, flow cytometry and immunohistochemistry. The average inoculation time was 10-15 min per rabbit. The tumorbearing rate was 100%. More than 90% of the tumor-bearing rabbits showed local solitary tumor with 2-10 mm diameters after two weeks post-inoculation, and the rate of chest seeding was only 8.3% (2/24). The tumors diameters increased to 4-16 mm, and irregularly short thorns were observed 3 weeks after inoculation. Five weeks post-inoculation, the liquefaction necrosis and a cavity developed, and the size of tumor grew further. Before natural death, the CT images showed that the tumors spread to the chest. The flow cytometry and immunohistochemistry indicated that there was less apoptosis in VX2 orthotopic lung cancer rabbit model compared to chemotherapy drug treatment group. Minimal invasive percutaneous puncture inoculation is an easy, fast and accurate method to establish the VX2 orthotopic lung cancer rabbit model, an ideal in situ tumor model similar to human malignant tumor growth.

Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography (개선된 가변형 능동모델을 이용한 흉부 컴퓨터단층영상에서 폐 실질의 분할)

  • Kim, Chang-Soo;Choi, Seok-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2163-2170
    • /
    • 2009
  • We present an automated, energy minimized-based method for Lung parenchyma segmenting Chest Computed Tomography(CT) datasets. Deformable model is used for energy minimized segmentation. Quantitative knowledge including expected volume, shape of Chest CT provides more feature constrain to diagnosis or surgery operation planning. Segmentation subdivides an lung image into its consistent regions or objects. Depends on energy-minimizing, the level detail image of subdivision is carried. Segmentation should stop when the objects or region of interest in an application have been detected. The deformable model that has attracted the most attention to date is popularly known as snakes. Snakes or deformable contour models represent a special case of the general multidimensional deformable model theory. This is used extensively in computer vision and image processing applications, particularly to locate object boundaries, in the mean time a new type of external force for deformable models, called gradient vector flow(GVF) was introduced by Xu. Our proposed algorithm of deformable model is new external energy of GVF for exact segmentation. In this paper, Clinical material for experiments shows better results of proposal algorithm in Lung parenchyma segmentation on Chest CT.