Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.605-607
/
2023
Recent research has highlighted the effectiveness of Deep Learning (DL) techniques in automating the detection of lung sound anomalies. However, the available lung sound datasets often suffer from limitations in both size and balance, prompting DL methods to employ data preprocessing such as augmentation and transfer learning techniques. These strategies, while valuable, contribute to the increased complexity of DL models and necessitate substantial training memory. In this study, we proposed a streamlined and lightweight DL method but effectively detects lung sound anomalies from small and imbalanced dataset. The utilization of 1D dilated convolutional neural networks enhances sensitivity to lung sound anomalies by efficiently capturing deep temporal features and small variations. We conducted a comprehensive evaluation of the ICBHI dataset and achieved a notable improvement over state-of-the-art results, increasing the average score of sensitivity and specificity metrics by 2.7%.
Thoracic sound has been widely known as a good method to examine thoracic disease. But, it's difficult to diagnose with correct data according to patient's thoracic position from same patient who has thoracic disease. Therefore, it is necessary to normalize the data for lung sound objectively In this paper, we'd like to detect a useful data for medical examination by applying PCA(Principal Component Analysis) to thoracic sound data and then present a objective data about lung and heart sound for thoracic disease.
In the diagnosis of pulmonary diseases, auscultation technique is simpler than the other methods, and lung sounds can be used for predicting the types of pulmonary diseases as well as identifying patients with pulmonary diseases. Therefore, in this paper, we identify patients with pulmonary diseases and classify lung sounds according to their sound characteristics using various convolutional neural networks, and compare the classification performance of each neural network method. First, lung sounds over affected areas of the chest with pulmonary diseases are collected by using a single-channel lung sound recording device, and spectral features are extracted from the collected sounds in time domain and applied to each neural network. As classification methods, we use general, parallel, and residual convolutional neural network, and compare lung sound classification performance of each neural network through experiments.
A new pattern classification algorithm using cepstrum to analyze lung sounds for the classification of pattern with pulmonary and bronchial disorders is proposed. To evaluate the perfomance of the proposed method, the results are compared to the pattern classification with the AR modeling method. In the experiment lung sounds recorded for the training of physician used. As a results, the accuracy of the cepstrum classification is 92.3 % and AR modeling is the 53.8 %, therefore cepstrum modeling method has very high performance than AR and it turned out to be a very efficient algorithm.
Rizal, Achmad;Hidayat, Risanuri;Nugroho, Hanung Adi
Journal of Information Processing Systems
/
v.15
no.5
/
pp.1068-1081
/
2019
Signal complexity is one point of view to analyze the biological signal. It arises as a result of the physiological signal produced by biological systems. Signal complexity can be used as a method in extracting the feature for a biological signal to differentiate a pathological signal from a normal signal. In this research, Hjorth descriptors, one of the signal complexity measurement techniques, were measured on signal sub-band as the features for lung sounds classification. Lung sound signal was decomposed using two wavelet analyses: discrete wavelet transform (DWT) and wavelet packet decomposition (WPD). Meanwhile, multi-layer perceptron and N-fold cross-validation were used in the classification stage. Using DWT, the highest accuracy was obtained at 97.98%, while using WPD, the highest one was found at 98.99%. This result was found better than the multi-scale Hjorth descriptor as in previous studies.
Heart sounds are the main obstacle in lung sound analysis. To tackle this obstacle, we propose a diagnosis algorithm that uses singular spectrum analysis (SSA) and frequency features of heart and lung sounds. In particular, we introduce a frequency coefficient that shows the frequency difference between heart and lung sounds. The proposed algorithm is applied to a synthetic mixture of heart and lung sounds. The results show that heart sounds can be extracted successfully and localizations for the first and second heart sounds are remarkably performed. An error analysis of the localization results shows that the proposed algorithm has fewer errors compared to the SSA method, which is one of the most powerful methods in the localization of heart sounds. The presented algorithm is also applied in the cases of recorded respiratory sounds from the chest walls of five healthy subjects. The efficiency of the algorithm in extracting heart sounds from the recorded breathing sounds is verified with power spectral density evaluations and listening. Most studies have used only normal respiratory sounds, whereas we additionally use abnormal breathing sounds to validate the strength of our achievements.
Lung sound analyer which can provide an objective diagnosis of patients with pulmonary and bronchial disorders is designed. For the purpose of power spectrum analysis, adaptive digital filtering technique and TM - S320C25 DSP chip is used. As a results, adaptive lattice Wiener filter could eliminate heart sounds with a few of 10th order and on the distribution of power spectrum each patterns has shown in normal vescicular breathy from 100 Hz to 200 Hz, in crackle sound from 100 Hz to 400 Hz, in wheeze sound from 150 Hz to 600 Hz.
Background: Vibration response imaging (VRI) is a new technology that records energy generated by airflow during the respiration cycle. Analysis of lung sound using VRI may overcome the limitations of auscultation. Objectives: To set a VRI standard for healthy Koreans, we conducted a clinical assessment to evaluate breath sound images and quantification in healthy subjects and compared the findings with reported breath sound characteristics. Methods: Recordings were performed using the VRIxp. Eighty subjects took a deep breath four times during a 12-second interval while sitting upright. The quantitative aspect was analyzed using the VRI quantitative lung data (QLD) for total left lung, total right lung and for six lung regions: left upper lung (LUL), left middle lung (LML), left lower lung (LLL), right upper lung (RUL), right middle lung (RML), right lower lung (RLL). The qualitative aspect was provided through image assessments by three reviewers. Results: In all regions the left lung had significantly higher QLD than the right lung (P<0.005, paired t-test). The inter-rater agreement was 0.78. 84% of the images were found normal by the final assessment. Among the 16% (n=13) of images with abnormal final assessment, the most common flawed features were dynamic image (77%, n=10) and maximum energy frame (MEF) shape (77%, n=10). No significant differences were found between males and females for QLD but there were significant differences in qualitative aspects including dynamic images, MEF shape, and missing LLL. Conclusion: The characteristics of healthy Koreans are similar to those of Western subjects reported previously. VRI is easy to use and objective, and so is helpful to diagnose patients with respiratory diseases and to monitor the progress of diseases after medical treatments.
Congenital diaphragmatic eventration is a rare disease and generally accepted as an abnormally high position of part or all of the diaphragm, usually associated with a marked decrease in muscle fibers and a membranous appearance of the abnormal area. There were 4 cases of the congenital diaphragmatic eventration at the Dept. of Thoracic Surgery, Seoul National University Hospital, from 1957 to 1977. They were two boys and two girls and ranging from 1 day to 3 years of age. They were all repaired by surgical operation and one was expired postoperatively, another one was dead one year later due to complication. The ratio between right and left was 1:3 and their symptoms were cyanosis, dyspnea and frequent respiratory disease. In physical examination there was noted decreased breathing sound on the affected lung field and bowel sound was audible in some cases. Diagnosis was done by Chest X-ray and plication of the affected diaphragm was usually done in operation. There were noted atelectasis and cystic change of the affected side lung. And the liver, colon, spleen and small intestine were found in the dome of the eventrated diaphragm.
Journal of Physiology & Pathology in Korean Medicine
/
v.20
no.2
/
pp.320-327
/
2006
This study was written in order to help understanding of listening diagnosis to vocal sound and speech. The purpose of listening diagnosis is that we know states of essence(精), Qi(氣) and spirit(神). Vocal sound and speech are made by Qi and spirit. Vocal sound originates from the center of the abdominal region(丹田) and comes out through vocal organs, for example lung, larynx, nose, tongue, tooth, lip and so on. Speech is expressed by vocal sound and spirit. They are controled by the Five Vital organs(五臟). Various changes of vocal sound and speech observe the rules of yinyang. For example, if we consider patient likes to say or not, we can diagnose heat and coldness of illness. If we consider he speaks loudly or quietly, we can diagnose weak and severe of illness. If we consider he speaks clearly or thick, we can diagnose inside and outside of illness. If we consider he speaks damp or dry, we can diagnose yin and yang of illness. If we consider change of voice, we can diagnose new and old illness. Symptoms of changes of five voices, five sounds, dumbness and huskiness are due to abnormal vocal sound, and symptoms of changes of mad talk, mumble, sleep talking and so on are due to abnormal speech.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.