• Title/Summary/Keyword: Lunar surface

Search Result 82, Processing Time 0.028 seconds

Simulation Study of Solar Wind Interaction with Lunar Magnetic Fields

  • Choi, Cheong Rim;Dokgo, Kyunghwan;Woo, Chang Ho;Min, Kyoung Wook
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Particle-in-cell simulations were performed to understand the interaction of the solar wind with localized magnetic fields on the sunlit surface of the Moon. The results indicated a mini-magnetosphere was formed which had a thin magnetopause with the thickness of the electron skin depth. It was also found that the solar wind penetrated into the cavity of the magnetosphere intermittently rather than in a steady manner. The solar wind that moved around the magnetosphere was observed to hit the surface of the Moon, implying that it may be the cause of the lunar swirl formation on the surface.

Development of a Structure for Lunar Lander Demonstrator (달착륙선 지상시험모델의 구조체 개발)

  • Son, Taek-Joon;Na, Kyung-Su;Lim, Jae Hyuk;Kim, Kyung-Won;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.213-220
    • /
    • 2013
  • Korean Lunar Explorer is planned to be launched in the 2020s according to national space development strategy. The Lunar Explorer will be developed as two unmanned light weight models: a lunar orbiter and a lunar lander. The Lunar Explorer's structure should be designed to have light weight due to constraints from launcher as well as to provide structural safety against launch load, in-orbit condition and landing condition and to serve accommodation space for mission equipment. Core technology related to structural development of lunar explorer should be developed in advance. Especially, for lunar lander, technology for developing landing gear which enables lander to land safely on lunar surface is required essentially. This paper deals with structural development of lunar lander ground test model including design, manufacturing and test.

Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

  • Lim, Hyung-Chul;Neumann, Gregory A.;Choi, Myeong-Hwan;Yu, Sung-Yeol;Bang, Seong-Cheol;Ka, Neung-Hyun;Park, Jong-Uk;Choi, Man-Soo;Park, Eunseo
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.211-219
    • /
    • 2016
  • Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

Network Lunar Science for International Lunar Network (ILN)

  • Choi, Young-Jun;Moon, Hong-Kyu;Yim, Hong-Suh;Lee, Duk-Hang;Park, Jang-Hyun;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.37.4-38
    • /
    • 2008
  • Recently, statement of Intent for ILN has been signed by 9 countries including Korea, initiated March of this year by NASA which invited countries having lunar exploration plans. Concept of ILN is placing several core set of instrumentation on the Moon, in order to maximize scientific return to all of the participants. Network measurements from various nodes on lunar surface is essential for understanding internal structure of the Moon and environment around the Moon. Currently, Core Instrument Working Group is discussing the scientific interests and instrumentation among participated countries. Korea also is looking over various ways to participate ILN. We will introduce the progress and possible lunar science of ILN and will discuss the science mission objectives.

  • PDF

Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model (달 표면온도 예측을 위한 집중계 해석방법과 하부 열유속 모델의 적용)

  • Kim, Taig Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Instead of securing thermophysical properties throughout the entire lunar surface, a theoretical method to predict the lunar surface temperature accurately using improved Lumped System Model (LSM) was developed. Based on the recently published research, thermal mass per unit area at the top regolith layer is assumed uniform. The function of bottom conductive heat flux was introduced under the theoretical background. The LSM temperature prediction agrees well with the DLRE measurement except for dusk, dawn and high latitude region where the solar irradiation is weak. The relative large temperature discrepancy in such region is caused by the limit of the bottom conductive heat flux model. The surface temperature map of the moon generated by the LSM method is similar to the DLRE measurement except for the anomalous temperature zones where surface topography and thermophysical properties appear in highly uneven.

Development Trend of Shock-Absorbing Landing gear for Lunar Lander (달착륙선 충격흡수 착륙장치 개발동향)

  • Kim, Won-Seock;Kim, Sun-Won;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.119-129
    • /
    • 2011
  • The soft landing of a lunar lander after the entrance of lunar orbit is an essential prerequisite for the accomplishment of the lander's lunar mission. During the landing process of a lunar lander, efficient shock absorption and stability maintenance are indispensible technology to protect payloads. Therefore, the landing gear is a crucial structural component of a lunar lander, it has to absorb the kinetic energy associated with touchdown and support the static load of the landing module in an upright position. In this paper, various landing gears of lunar landers which are being developed as well as which had been successfully landed on the moon surface are investigated. In the end, the Korean lunar lander, which is being designed for preliminary development model, is presented as an example of the lunar lander development.

  • PDF

Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method (집중계 해석법을 이용한 달 표면온도 예측)

  • Kim, Taig Young;Lee, Jang-Joon;Chang, Su-Young;Kim, Jung-Hoon;Hyun, Bum-Seok;Cheon, Hyeong Yul;Hua, Hang-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • The lunar surface temperature is important as a environmental parameter for the thermal design of the lunar exploration vehicles such as orbital spacecraft, lander, and rovers. In this study, the temperature is numerically predicted through a simplified lumped system model for the energy conservation. The physical values required for the analysis of the energy equation are derived by considering the geometric shape, and the values presented in the previous research results. The areal specific heat, which is the most important thermo-physical property of the lumped system model, was extracted from the temperature measurements by the Diviner loaded on the LRO, and the value was predicted by calibration of the analytical model to the measurements. The predicted temperature distribution obtained through numerical integration has sufficient accuracy to be applied to the thermal design of the lunar exploration vehicles.

Development of a Coarse Lunar Soil Model Using Discrete Element Method (이산요소법을 이용한 성긴 달토양 수치해석모델 개발)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.26-34
    • /
    • 2019
  • In this paper, a coarse lunar soil model is developed using discrete element method and its computed physical properties are compared with those of the actual lunar soil for its validation. The surface of the actual moon consists of numerous craters and rocks of various sizes, and it is covered with fine dry soil which seriously affects the landing stability of the lunar lander. Therefore, in consideration of the environment of the lunar regolith, the lunar soil is realized using discrete element method. To validate the coarse model of lunar soil, the simulations of the indentation test and the direct shear test are performed to check the physical properties(indentation depth, cohesion stress, internal friction angle). To examine the performance of the proposed model, the drop simulation of finite element model of single-leg landing gear is performed on proposed soil models with different particle diameters. The impact load delivered to the strut of the lander is compared to test results.

Optimal Guidance and Nonlinear Tracking Control for a Lunar Lander

  • Hwang, Myung-Shin;Kim, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.2-167
    • /
    • 2001
  • This paper presents guidance and control laws which guarantee a minimum fuel consumption and have obustness against various disturbances during a terminal-landing phase on the lunar surface. The nonlinear robust tracking control system is designed to track the reference profiles, which are expressed by exponential functions. An adjustment law in the tracking controller is given in the form of the differential equations with respect to the controller´s variable gains. Computer simulations are performed to examine the tracking accuracy, the robustness in a thrust failure mode, and the vertical soft landing at a pre-assigned point on the lunar surface. The results of numerical simulation show the effectiveness of the present control law.

  • PDF

Stereo Semi-direct Visual Odometry with Adaptive Motion Prior Weights of Lunar Exploration Rover (달 탐사 로버의 적응형 움직임 가중치에 따른 스테레오 준직접방식 비주얼 오도메트리)

  • Jung, Jae Hyung;Heo, Se Jong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.479-486
    • /
    • 2018
  • In order to ensure reliable navigation performance of a lunar exploration rover, navigation algorithms using additional sensors such as inertial measurement units and cameras are essential on lunar surface in the absence of a global navigation satellite system. Unprecedentedly, Visual Odometry (VO) using a stereo camera has been successfully implemented at the US Mars rovers. In this paper, we estimate the 6-DOF pose of the lunar exploration rover from gray images of a lunar-like terrains. The proposed algorithm estimates relative pose of consecutive images by sparse image alignment based semi-direct VO. In order to overcome vulnerability to non-linearity of direct VO, we add adaptive motion prior weights calculated from a linear function of the previous pose to the optimization cost function. The proposed algorithm is verified in lunar-like terrain dataset recorded by Toronto University reflecting the characteristics of the actual lunar environment.