• 제목/요약/키워드: Lumped mass model

검색결과 157건 처리시간 0.031초

Numerical analysis of dynamic response of jacket structures subject to slamming forces by breaking waves

  • Woo, Chanjo;Chun, Insik;Navaratnam, Christy Ushanth;Shim, Jaeseol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.404-417
    • /
    • 2017
  • The present study numerically analyzed the dynamic behavior of 3D framed structures subject to impulsive slamming forces by violent breaking waves. The structures were modeled using multiple lumped masses for the vertical projections of each member, and the slamming forces from the breaking waves were concentrated on these lumped masses. A numerical algorithm was developed to properly incorporate the slamming forces into a dynamic analysis to numerically determine the structural responses. Then, the validity of the numerical analysis was verified using the results of an existing hydraulic experiment. The numerical and experimental results for various model structures were generally in good agreement. The uncertainties concerning the properties of the breaking waves used in the verification are also discussed here.

Experiments on influence of foundation mass on dynamic characteristic of structures

  • Pham, Trung D.;Hoang, Hoa P.;Nguyen, Phuoc T.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.505-511
    • /
    • 2018
  • Recently, a new foundation model called "Dynamic foundation model" was proposed for the dynamic analysis of structures on the foundation. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameter of foundation during vibration. However, the relationship of foundation property parameters with the experimental parameter of the influence of foundation mass also has not been established in previous research. Hence, the purpose of the paper presents a simple experimental model in order to establish relationships between foundation properties such as stiffness, depth of foundation and experimental parameter of the influence of foundation mass. The simple experimental model is described by a steel plate connected with solid rubber layer as a single degree of freedom system including an elastic spring connected with lumped mass. Based on natural circular frequencies of the experimental models determined from FFT analysis plots of the time history of acceleration data, the experimental parameter of the influence of foundation mass is obtained and the above relationships are also discussed.

차체 추요 부재의 강성이 정면 충돌 거동에 미치는 영향 (Effect of the Main Structure Stiffness on the Frontal Collision Behavior)

  • 김천욱;한병기;김종찬;정훈
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.234-241
    • /
    • 2002
  • In this study, the car crash analysis that simulates the crushing behavior of car forestructure during a frontal impact is carried out. The analysis model for front impact of a car consists of the lumped mass and the spring model. The characteristics value of masses and springs is obtained from the static analysis of a target car. The deceleration-time curve obtained from the simulation are compared with NCAP test data from the NHTSA. They show a good agreement with frontal crash test data. The deceleration-time curve of passenger compartment is classified into 3 stages; beginning stage, middle stage, and last stage. And the behavior of masses at each stage is explained. The effect of stiffness variation on deceleration of passenger compartment is resolved. The maximum loaded peak-time of torque box and dash is the main factor to control the passenger compartment's maximum deceleration.

모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구 (The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass)

  • 허덕재;정재엽;조연;박태원
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

Riser Configuration Design for a 15-MW Floating Offshore Wind Turbine Integrated with a Green Hydrogen Facility

  • Sung-Jae Kim;Sung-Ju Park
    • 한국해양공학회지
    • /
    • 제38권3호
    • /
    • pp.137-147
    • /
    • 2024
  • Green hydrogen presents a sustainable and environmentally friendly solution for clean energy production and transportation. This study aims to identify the optimal profile of green hydrogen transportation risers originating from a floating offshore wind turbine (FOWT) integrated with a hydrogen production facility. Employing the Cummins equation, a fully coupled dynamic analysis for FOWT with a flexible riser was conducted, with the tower, mooring lines, and risers described using a lumped mass line model. Initially, motion response amplitude operators (RAOs) were compared with openly published results to validate the numerical model for the FOWT. Subsequently, a parametric study was conducted on the length of the buoyancy module section and the upper bare section of the riser by comparing the riser's tension and bending moment. The results indicated that as the length of the buoyancy module increases, the maximum tension of the riser decreases, while it increases with the lengthening of the bare section. Furthermore, shorter buoyancy modules are expected to experience less fatigue damage, with the length of the bare section having a relatively minor impact on this phenomenon. Consequently, to ensure safety under extreme environmental conditions, both the upper bare section and the buoyancy module section should be relatively short.

달 표면온도 예측을 위한 집중계 해석방법과 하부 열유속 모델의 적용 (Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model)

  • 김택영
    • 한국항공우주학회지
    • /
    • 제47권1호
    • /
    • pp.66-74
    • /
    • 2019
  • 달 표면 전체에 걸쳐 열물성치를 확보하는 대신 단위 면적당 열질량을 이용하여 달 표면온도를 정확히 예측할 수 있는 개선된 집중계(Lumped System Model, LSM) 해석방법을 제시하였다. 최근에 발표된 연구에 기초하여 표토층 최상단의 단위 면적당 열 질량이 균일하다고 가정하고, 하부면 전도열유속 방정식을 이론적인 근거 하에 도입함으로써 DLRE 측정온도와 상당한 정도 잘 일치하는 달 표면의 온도지도를 구하였다. LSM 온도예측은 태양복사가 약한 황혼, 새벽 및 고위도 지역을 제외하면 DLRE 측정과 잘 일치하며, 이러한 지역에서의 온도 불일치는 하부 전도열유속 모델의 한계에 기인한다. 표면 지형과 열물성치가 매우 불균일한 지역에서 나타나는 비정상온도 영역을 제외하고 LSM 분석으로 생성된 달 표면 온도지도는 DLRE 측정 결과와 유사하다.

소음/진동을 고려한 철도 감속기 개발에 대한 연구 (A Study on Development of Railway Reducer for Low Noise/Vibration)

  • 이형우;박노길
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.130-137
    • /
    • 2004
  • A dynamic model of railway reducer is developed by the lumped parameter method. The model accounts for shafts, bearings flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of gear teeth, and bearing life are considered. Excitation forces of railway reduction are considered as the mass unbalance of the rotors, misalignment and a function of gear transmission error which comes from the modified tooth surface. A campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not the critical speed. The program which can be used to analyze and predict vibration/noise characteristics by mass unbalance, misalignment and gear transmission error of railway reduction is developed with this system model.

집중질량 모형화에 의한 점탄성재료의 복소 탄성계수 산출을 위한 시편 크기 의 절정 (Determination of Specimen Geomery for Estimation of the Complex Modulus of Viscoelas the Materials by the Lumped Mass Model)

  • 강기호;심송;김광준
    • 소음진동
    • /
    • 제1권2호
    • /
    • pp.121-128
    • /
    • 1991
  • In order to use viscoelastic materials efficiently for noise and vibration control, or th qualify newly developed materials, knowledge of the Young' s modulus and loss factor is essemtial. These material properties, the so-called complex Young' s modulus, are frequently treated as dynamic charicteristics because of their dependence upon the frequency. Many techniques have been developed and verified for measuring complex Young' s modulus of viscoelastic materials. Among them, the impedance method is preferable in order to obtain the frequency information in detail. In this method, a cylindrical or prismatic specimen is excited into longitudinal harmonic vibration at one end, the other being fixed, and the resulting force is measured at the driving or fixed end. The amplitude ratio of the two signals and phase angle between them are then used to compute the material properties using various mathematical models. In this paper, the impedance method is investigated theoretically and experimentally. A way to determine the specimen geometry which is most appropriate for the identification of complex Young' s modulus using the lumped mass model is presented and discussed. Then experimental results supporting the theoretical predictions are presented.

  • PDF

소형 냉장고용 왕복동식 압축기의 열전달에 관한 수치해석 연구 (A Numerical Study on Heat Transfer in a Reciprocating Compressor for a Domestic Refrigerator)

  • 심윤희;윤영;박윤철
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.377-385
    • /
    • 2005
  • An analytical model was developed using the lumped mass parameter method to estimate temperature distribution of metal parts and refrigerant of the hermetic reciprocating compressor, All of the lumped mass has been equated with the first law of thermodynamics. In the delivered equation, correlations of heat transfer coefficient in the heat transfer equation were taken from open literature. The equations are solved by Gauss-Jordan method simultaneously. To verify the developed numerical program, an experiment was conducted with a domestic refrigerator. The compressor which had been installed at the bottom of the experimental refrigerator was modified to measure internal temperature. Model verification test was conducted at $30^{\circ}C$ outdoor temperature with variation of compressor cooling conditions. As a result, there is a good consistency between calculated temperature and measured one.