• 제목/요약/키워드: Lumped mass model

검색결과 156건 처리시간 0.027초

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권3호
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

등가 모델을 이용한 대공간 구조물의 동적 거동 특성에 관한 연구 (A Study on the Characteristics of dynamic Behaviors for the Spatial Structures using Equivalent Lumped Mass Model)

  • 한상을;이상주;김민식;이정현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 2004
  • The earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for the stability. For those purposes, recently, the performance design concept to increase the degree of absorbed energy level of structures has been proposed. One practical way of the performance design in the spatial structures is to apply the isolation system to boundary parts of roof system and sub-structure to obtain the target performance. So, it is necessary to examine the characteristics of dynamic behavior of spatial structures governed by higher modes rather than lower modes different from the cases of high rise buildings. The objectives of this paper are to develop the equivalent lumped mass model to simplify the analytical processes and to investigate the dynamic behavior of roof system according to the mass and the stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

  • PDF

와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석 (Nonlinear Vibration Analysis of Porous Thin Plate with Wire Impact Damping)

  • 김성대;김원진;이부윤;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, nonlinear vibration analysis of the cylindrical orthotropic porous thin plate under V-shaped tension distribution with wire impact damping is considered. We make dynamic model of the plate under the tension using commercial FEM code and reduce the number of its degrees of freedom using dynamic condensation. The dynamic model of wire is obtained as lumped mass model from string equation. And then we analyze the nonlinear vibration of the plate including the impact phenomenon between the plate and the wire using the reduced mass and stiffness matrices of the plate and lumped model of the wire. The contact phenomenon between them can be described by impact contact elements composed of contact stiffness coefficients from Hertzian contact theory and contact damping coefficients from restitution coefficient between them. And we discussed the results of nonlinear vibration analysis for variations of their design parameters.

  • PDF

집중 질량-스프링 모델을 이용한 볼트 결합부 모델링 (Dynamic Modeling of Bolt Joints Using Lumped Mass-Spring Model)

  • 고강호;이장무
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.495-501
    • /
    • 2001
  • In this paper, a new technique which models the joints characteristics through reduction of DOFs of structures with joints using component mode synthesis (CMS) method is proposed. Bolt joints are modeled by mass-spring systems. Also generalized mass and stiffness matrices for this models are introduced. Because bolt joints have influence on eigenvalues of structures, exact eigenvalues from modal test are used. The results show that the behaviors of structures with bolt joints depend to a large extent on the translational DOFs and not on rotational DOFs of mass and stiffness matrices of bolts. Furthermore it is confirmed that lumped mass-spring systems as models of bolt joints are effective models considering the facts that joint characteristics converged to constant values in some iterations and eignevalues from proposed method are in good agreement with ones from modal test.

750kW 풍력발전기 타워 구조의 진동 특성 (Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator)

  • 김석현;남윤수;은성용
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

유체력을 고려한 보-유추 선체진동 해석 (Beam-Like Ship Vibration Analysis in Consideration of Fluid)

  • Son, Choong-Yul
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.206-213
    • /
    • 1999
  • 선박의 보-유추 진동해석에 있어 2차원 부가수질량의 3차원 효과를 고려하기 위해서 3차원 수정계수(J-factor)를 계산해야 하는데 광폭선의 경우에는 J-factor의 계산이 부정확하고 번거롭다. 이 논문에서는 이를 개선하기 위해 새로운 선박의 보-유추 접수진동해석 방법을 소개하였다. 이 방법은 선박에 접수된 유체에 대해 BEM 기법을 이용하여 3차원 유체력을 직접 계산하고 이를 일정 간격으로 나눈 각 스트립에 집중질량으로 평가한 후에 선체의 보모델과 결합하여 보-유추 진동해석을 수행하는 방법이다. 오픈탑 컨테이너선의 모델에 대해 기존의 보-유추 진동해석방법과 이 논문에서 제시한 새로운 진동해석방법을 이용하여 진동해석을 수행하고 가진 실험에 의한 진동계측결과와 상호 비교함으로써 새로운 방법의 유용성을 검증하였다.

  • PDF

동적이완법을 이용한 Steel Lazy Wave Riser의 정적형상 추정에 관한 수치해석적 연구 (Numerical Study on Estimation of Static Configuration of Steel Lazy Wave Riser Using Dynamic Relaxation Method)

  • 오승훈;정재환;박병원;권용주;정동호
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.466-473
    • /
    • 2018
  • This paper presents an estimation method for the static configuration of a steel lazy wave riser (SLWR) using the dynamic relaxation method applied to estimate the configuration of structures with strong geometric non-linearity. The lumped mass model is introduced to reflect the flexible structural characteristics of the riser. In the lumped mass model, the tensions, shear forces, buoyancy, self-weights, and seabed reaction forces at nodal points are considered in order to find the static configuration of the SLWR. The dynamic relaxation method using a viscous damping formulation is applied to the static configuration analysis. Fictitious masses are defined at nodal points using the sum of the largest direct stiffness values of nodal points to ensure the numerical stability. Various case studies were performed according to the bending stiffness and size of the buoyancy module using the dynamic relaxation method. OrcaFlex was employed to validate the accuracy of the developed numerical method.

캠 축의 운동 궤적 해석에 관한 연구 (A Study on the Camshaft Locus Analysis in a Camshaft Bearing)

  • 지유철;조명래;정진영;최상현;한동철;최재권
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.167-175
    • /
    • 1997
  • The locus of a camshaft supported on camshaft bearings has been investigated using transient method. Forces applied to camshaft are composed of two components, one is transfer force between cam and tappet, the other is frictional force. These forces have been calculated using lumped mass model and EHL theory. ADI method has been used for numerical analysis of Reynolds equation, and 4th order Runge-Kutta method has been used for transient journal locus analysis. The effects of various load conditions are presented in the form of journal locus. As the result of analysis, it is found that camshaft bearings exist in the hydrodynamic lubrication condition.

  • PDF

직접 구동 OHC 밸브 트레인 캠 축의 운동 궤적 해석 (An Analytical Study on Camshaft Locus at Camshaft Bearing in a Direct Acting OHC Valve Train System)

  • 지유철;조명래;정진영;최상현;한동철;최재권
    • Tribology and Lubricants
    • /
    • 제13권4호
    • /
    • pp.53-59
    • /
    • 1997
  • The camshaft locus at camshaft beating in a direct acting OHC valve train system has been investigated using the transient method. Forces applied to the camsfiaft are composed of two components, one is the transfer force between the cam and the tappet, the other is the frictional force. These forces have been calculated using the lumped mass model and the elastohydrodynamic lubrication theory. The alternating direction implicit method has been used for the numerical analysis of Reynolds equation, and 4th order Runge-Kutta method has been used for the transient journal locus analysis. The effects of various load conditions are presented in the form of journal locus. As a result of the analysis, it has been found that camshaft bearings were mainly in the hydrodynamic lubrication condition.

선형 2자유도계를 이용한 면진구조물의 지진응답 연구 및 원자력발전소 적용 (Study on Seismic Responses for Base Isolated Structure Using Linear 2 DOF System and Its Application for NPP)

  • 유봉;이재한
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.225-232
    • /
    • 1997
  • A study of effects of design parameters on the seismic responses of base isolated structure is performed to reduce the seismic responses using a linear tw0-degree of freedom system and a lumped-mass model of a nuclear power p;ant(NPP). From the simplified 2 DOF system the optimal isolation frequency being less than 1/10th of the fundamental frequency of superstructure is obtained, and the isolator damping minimizing the peak acceleration depends on superstructure frequency. From the time history analyses for lumped mass model of NPP the optimal damping is calculated as 40% in containment building and 65% in reactor internal structure. Similar results are obtained in 2 DOF system

  • PDF