• Title/Summary/Keyword: Lumped Model

Search Result 528, Processing Time 0.028 seconds

Implementation of Zero-Ripple Line Current Induction Cooker using Class-D Current-Source Resonant Inverter with Parallel-Load Network Parameters under Large-Signal Excitation

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1251-1264
    • /
    • 2018
  • The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.

A Study on the Dynamic Analysis of Mooring System During Hook-up Installation

  • Lee, Min Jun;Jo, Hyo Jae;Lee, Sung Wook;Hwang, Jea Hyuk;Kim, Jea Heui;Kim, Young Kyu;Baek, Dong Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.285-293
    • /
    • 2020
  • This study evaluated the Hook-up installation of an offshore site construction process, which is the final step in an offshore site installation process. During Hook-up installation, the offshore structure can have a detrimental effect on the work stability due to low-frequency motion. Moreover, economic costs can be incurred by the increase in available days of a tugboat. Therefore, this study developed a numerical analysis program to assess the dynamic behavior of mooring systems during hook-up installation to analyze the generally performed installation process and determine when the tugboat should be released. In this program, the behavior of an offshore structure was calculated using Cummin's time-domain motion equation, and the mooring system was calculated by Lumped mass method (LMM). In addition, a tugboat algorithm for hook-up installation was developed to apply the Hook-up procedure. The model used in the calculations was the barge type assuming FPSO (Floating production storage and off-loading) and has a taut mooring system connected to 16 mooring lines. The results of the simulation were verified by comparing with both MOSES, which is a commercial program, and a calculation method for restoring coefficient matrix, which was introduced by Patel and Lynch (1982). Finally, the offset of the structure according to the number of tugboats was calculated using the hook-up simulation, and the significant value was used to represent the calculation result.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

The optimization study of core power control based on meta-heuristic algorithm for China initiative accelerator driven subcritical system

  • Jin-Yang Li;Jun-Liang Du;Long Gu;You-Peng Zhang;Cong Lin;Yong-Quan Wang;Xing-Chen Zhou;Huan Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.452-459
    • /
    • 2023
  • The core power control is an important issue for the study of dynamic characteristics in China initiative accelerator driven subcritical system (CiADS), which has direct impact on the control strategy and safety analysis process. The CiADS is an experimental facility that is only controlled by the proton beam intensity without considering the control rods in the current engineering design stage. In order to get the optimized operation scheme with the stable and reliable features, the variation of beam intensity using the continuous and periodic control approaches has been adopted, and the change of collimator and the adjusting of duty ratio have been proposed in the power control process. Considering the neutronics and the thermal-hydraulics characteristics in CiADS, the physical model for the core power control has been established by means of the point reactor kinetics method and the lumped parameter method. Moreover, the multi-inputs single-output (MISO) logical structure for the power control process has been constructed using proportional integral derivative (PID) controller, and the meta-heuristic algorithm has been employed to obtain the global optimized parameters for the stable running mode without producing large perturbations. Finally, the verification and validation of the control method have been tested based on the reference scenarios in considering the disturbances of spallation neutron source and inlet temperature respectively, where all the numerical results reveal that the optimization method has satisfactory performance in the CiADS core power control scenarios.

Coupled Dynamic Analyses of Underwater Tracked Vehicle and Long Flexible Pipe (유연관-해저주행차량 연성 동적거동 해석)

  • Hong, Sup;Kim, Hyung-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 2008
  • We developed a computational method on coupled dynamics of tracked vehicle on seafloor and long flexible pipe. The tracked vehicle is modeled as rigid-body vehicle, and the linked flexible pipe is discretized according to a lumped-parameter model. The equations of motion of the rigid-body vehicle on the soft seafloor are combined with the governing equations of flexible pipe dynamics. Four Euler parameters method is used to express the orientations of the vehicle and the flexible pipe. In order to solve the nonlinear coupled dynamics of vehicle and flexible pipe an incremental-iterative formulation is implemented. For the time-domain integration $Newmark-\beta$ method is adopted. The total Jacobean matrix has been derived based on the incremental-iterative formulation. The interactions between the dynamics of flexible pipe and the mobility of the tracked vehicle on soft seafloor are investigated through numerical simulations in time domain.

Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석)

  • Lee, Jin-Ho;Lee, Sang-Bong;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, an analysis method for the earthquake response of an offshore wind turbine model is developed, considering the effects of the fluid-structure-soil interaction. The turbine is modeled as a tower with a lumped mass at the top of it. The tower is idealized as a tubular cantilever founded on flexible seabed. Substructure and Rayleigh-Ritz methods are used to derive the governing equation of a coupled structure-fluid-soil system incorporating interactions between the tower and sea water and between the foundation and the flexible seabed. The sea water is assumed to be a compressible but non-viscous ideal fluid. The impedance functions of a rigid footing in water-saturated soil strata are obtained from the Thin-Layer Method (TLM) and combined with the superstructure model. The developed method is applied to the earthquake response analysis of an offshore wind turbine model. The method is verified by comparing the results with reference solutions. The effects of several factors, such as the flexibility of the tower, the depth of the sea water, and the stiffness of the soil, are examined and discussed. The relative significance of the fluid-structure interaction over the soil-structure interaction is evaluated and vice versa.

A Study on Proper Number of Subbasin Division for Runoff Analysis Using Clark and ModClark Methodsdd in Midsize Basins (중규모 유역에서 Clark 방법과 ModClark 방법을 이용한 유출해석 시적정 소유역 분할 개수에 대한 연구)

  • Lee, Donghoon;Choi, Jongin;Shin, Soohoon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.157-170
    • /
    • 2013
  • In this study, flood runoff characteristics is analyzed according to subbasin divisions by physically based rainfall-runoff model and appropriate number of subbasin divisions is suggested for midsize test basins. The Clark method, a lumped model in HEC-HMS, and the ModClark method, a semi-distributed model are used to simulate rainfall-runoff processes on Andong-reservoir basin, Imha-reservoir basin, and Pyeongchang river basin. The test basins were divided into nine subdivision cases by equal-area subdivision method such as single basin, 3, 5, 6, 7, 9, 10, 12, and 15 subbasins, and compared the simulated and observed values in terms of the peak flow and the peak time. The simulation results indicated that the peak flows tended to increase and the peak time shifted earlier as the number of subdivisions increased and this tendency weakened after the certain number of subdivisions. In this research, the specific number of subdivision was defined as the minimum number of subdivision considering both peak flow and peak time. Consequently, the minimum number of subdivisions is determined as 5 for Andong and Imha reservoir basins and 7 for Pyeongchang river basin.

Evaluation on applicability of on/off-line parameter calibration techniques in rainfall-runoff modeling (온·오프라인 매개변수 보정기법에 따른 강우-유출해석 적용성 평가)

  • Lee, Dae Eop;Kim, Yeon Su;Yu, Wan Sik;Lee, Gi Ha
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.241-252
    • /
    • 2017
  • This study aims to evaluate applicability of both online and offline parameter calibration techniques on rainfall-runoff modeling using a conceptual lumped hydrologic model. To achieve the goal, the storage function model was selected and then two different automatic calibration techniques: SCE-UA (offline method) and particle filter (online method) were applied to calibrate the optimal parameter sets for 9 rainfall events in the Cheoncheon catchment, upper area of the Yongdam multi-purpose dam. In order to assess reproducibility of hydrographs from the parameter sets of both techniques, the observed discharge of each event was divided into low flow (below average flow) and high flow (over average flow). The results show that the particle filter method, updating the parameters in real-time, provides more stable reproducibility than the SCE-UA method regardless of low and high flow. The optimal parameters estimated by SCE-UA are very sensitive to the selected objective functions used in this study: RMSE and HMLE. In particular, the parameter sets from RMSE and HMLE demonstrate superior goodness-of-fit values for high flow and low flow periods, respectively.

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Lee, Chang-Ho;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely cohesive soft soil is applied to the self-propelled miner. Hinged and ball constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, self-propelled miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-${\beta}$ method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

A Study on the Generalization of Multiple Linear Regression Model for Monthly-runoff Estimation (선형회귀모형(線型回歸模型)에 의한 하천(河川) 월(月) 유출량(流出量) 추정(推定)의 일반화(一般化)에 관한 연구(硏究))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 1980
  • The Linear Regression Model to extend the monthly runoff data in the short-recorded river was proposed by the author in 1979. Here in this study generalization precedure is made to apply that model to any given river basin and to any given station. Lengthier monthly runoff data generated by this generalized model would be useful for water resources assessment and waterworks planning. The results are as follows. 1. This Linear Regression Model which is a transformed water-balance equation attempts to represent the physical properties of the parameters and the time and space varient system in catchment response lumpedly, qualitatively and deductively through the regression coefficients as component grey box, whereas deterministic model deals the foregoings distributedly, quantitatively and inductively through all the integrated processes in the catchment response. This Linear Regression Model would be termed "Statistically deterministic model". 2. Linear regression equations are obtained at four hydrostation in Geum-river basin. Significance test of equations is carried out according to the statistical criterion and shows "Highly" It is recognized th at the regression coefficients of each parameter vary regularly with catchment area increase. Those are: The larger the catchment area, the bigger the loss of precipitation due to interception and detention storage in crease. The larger the catchment area, the bigger the release of baseflow due to catchment slope decrease and storage capacity increase. The larger the catchment area, the bigger the loss of evapotranspiration due to more naked coverage and soil properties. These facts coincide well with hydrological commonsenses. 3. Generalized diagram of regression coefficients is made to follow those commonsenses. By this diagram, Linear Regression Model would be set up for a given river basin and for a given station (Fig.10).

  • PDF