• Title/Summary/Keyword: Lumped 모델

Search Result 174, Processing Time 0.029 seconds

Stabilization Characteristics of the Pyrolyzed Oil from Waste Lubricating Oil (폐윤활유 열분해유의 안정화 특성 연구)

  • Kim, Seung-Soo;Kim, Young-Seok;Chun, Byung-Hee;Park, Chan Jin;Yoon, Wang Lai;Kim, Sung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1055-1061
    • /
    • 2000
  • The kinetics of tar formation has been studied experimentally and modeled mathematically for waste lubricating oil after pyrolyzed at batch reactor. And stabilization of pyrolyzed oil has been studied. A combination of series and parallel reaction was assumed for the mechanism of tar formation. From the proposed kinetic model, pyrolyzed oil to tar was found to be rate limiting step for tar formation. It was found that the fly ash and coke had the ability to remove materials of tar formation and to protect oxidation of pyrolyzed oil.

  • PDF

Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents (HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가)

  • Yoon, Churl;Park, Jin-Hee;Hwang, Mee-Jeong;Han, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.553-562
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) analysis has been performed to estimate the air temperature inside an Auxiliary Feed Water (AFW) Motor-Driven (MD) pump room for the case where there is loss of Heating, Ventilation, and Air-Conditioning (HVAC). A transient calculation for the closed pump room without cooling by any HVAC system shows that the volume-averaged air temperature reaches around $60^{\circ}C$ for a transient period of 8.0 h. From previous studies, the external air and surface boundary temperatures are assumed to increase slowly starting from an initial temperature of $35^{\circ}C$. For the cases where the door is opened at 2, 4, and 6 h after the initiation of HVAC failure, the average air temperature promptly drops by about $4^{\circ}C$ when the door is opened and then slowly increases. The current calculations based on the CFD technique predict the rate of increase of air temperature to be lower than that determined by previous conservative calculations on the basis of a lumped model.

Wet Oxidation of Phenol with Homogeneous Catalysts (균일촉매를 이용한 페놀의 습식산화)

  • Suh, Il-Soon;Ryu, Sung Hun;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.292-302
    • /
    • 2009
  • The wet oxidation of phenol has been investigated at temperatures from 150 to $250^{\circ}C$ and oxygen partial pressures from 25.8 to 75.0 bar with initial pH of 1.0 to 12.0 and initial phenol concentration of 10 g/l. Chemical Oxygen Demand COD has bee measured to estimate the oxidation rate. Reaction intermediates have been identified and their concentration profiles have been determined using liquid chromatography. The destruction rate of phenol have shown the first-order kinetics with respect to phenol and the changes in COD during wet oxidation have been described well with the lumped model. The impact of various homogeneous catalysts, such as $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Co^{2+}$ and $Ce^{3+}$ ions, on the destruction rate of phenol and COD has also been studied. The homogeneous catalyst of $CuSO_4$ has been found to be the most effective for the destruction of phenol and COD during wet oxidations. The destruction rate of formic acid formed during wet oxidations of phenol have increased as increasing temperature and $CuSO_4$ concentration. The final concentrations of acetic acid which has been formed during wet oxidations and difficult to oxidize have increased with reaction temperature and with decrease in the catalyst load.

Study on the Steam Line Break Accident for Kori Unit-1 (고리 1호기에 대한 증기배관 파열사고 연구)

  • Tae Woon Kim;Jung In Choi;Un Chul Lee;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.186-195
    • /
    • 1982
  • The steam line break accident for Kori Unit 1 is analyzed by a code SYSRAN which calculates nuclear power and heat flux using the point kinetics equation and the lumped-parameter model and calculates system transient using the mass and energy balance equation with the assumption of uniform reactor coolant system pressure. The 1.4 f $t^2$ steam line break accident is analyzed at EOL (End of Life), hot shutdown condition in which case the accident would be most severe. The steam discharge rate is assumed to follow the Moody critical flow model. The results reveal the peak heat flux of 38% of nominal full power value at 60 second after the accident initiates, which is higher than the FSAR result of 26%. Trends for the transient are in good agreement with FSAR results. A sensitivity study shows that this accident is most sensitive to the moderator density coefficient and the lower plenum mixing factor. The DNBR calculation under the assumption of $F_{{\Delta}H}$=3.66, which is used in the FSAR with all the control and the shutdown assemblies inserted except one B bank assembly and of Fz=1.55 shows that minimum DNBR reaches 1.62 at 60 second, indicating that the fuel failure is not anticipated to occur. The point kinetics equation, the lumped-parameter model and the system transient model which uses the mass and energy balance equation are verified to be effective to follow the system transient phenomena of the nuclear power plants.lear power plants.

  • PDF

Assessment of the Effect of Digital Dlevation Model(DEM) Resolution on Simulation Results of the Physical Deterministic Lumped Parameters Hydrological Model (수치표고모형(DEM)의 해상도가 물리 결정 일괄 매개변수 수문모형의 모의 결과에 미치는 영향 평가)

  • Kim, Man-Kyu;Park, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.151-165
    • /
    • 2008
  • Ground slope and aspect are important parameters for physical deterministic water balance models like BROOK90 or hydrological models which attempt to calculate evapotranspiration, snowmelt, and net radiation. This study constructs a Digital Elevation Model(DEM) and examines how DEM resolution can change the average ground slope and aspect of a river basin and attempts to evaluate the effects on simulation results of BROOK90, a physical deterministic water balance model. The study area is Byungcheon river basin in Korea. DEM has been constructed using a 1:25,000 digital map with the methods of TIN and Topo To Raster. The total of 20 DEMs with 10m~100m resolution have been constructed, with a 10m interval. It was found that the higher the DEM resolution, the steeper the average ground slope value of the Byungcheon river basin. In turn, the direct solar radiation of a hilly area in the model increased the evapotranspiration and reduced the stream runoff in the Byungcheon river basin. On the other hand, a lower DEM resolution tends to move the average aspect from southeast to south in the Byungcheon river basin. Accordingly, it was found that stream runoff was reduced and evapotranspiration increased.

  • PDF

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Lee, Chang-Ho;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely cohesive soft soil is applied to the self-propelled miner. Hinged and ball constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, self-propelled miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-${\beta}$ method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

A Multi-scale Simulation Model of Circulation Combining Cardiovascular Hemodynamics with Cardiac Cell Mechanism (심근세포-심혈관계 혈류역학이 결합된 복합적 순환계 모델에 관한 연구)

  • Ko Hyung Jong;Leem Chae Hun;Shim Eun Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1164-1171
    • /
    • 2004
  • A new multi-scale simulation model is proposed to analyze heart mechanics. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. The ion transports across cell membrane initiated by action potential induce an excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to calculate the tension of cross bridge which is closely related to the ion dynamics in cytoplasm. To convert the tension on cell level into contraction force of cardiac muscle, we introduce a simple geometric model of ventricle with a thin-walled hemispheric shape. It is assumed that cardiac tissue is composed of a set of cardiac myocytes and its orientation on the hemispheric surface of ventricle remains constant everywhere in the domain. Application of Laplace law to the ventricle model enables us to determine the ventricular pressure that induces blood circulation in a body. A lumped parameter model with 7 compartments is utilized to describe the systemic circulation interacting with the cardiac cell mechanism via NL model and Laplace law. Numerical simulation shows that the ion transports in cell level eventually generate blood hemodynamics on system level via cross bridge dynamics and Laplace law. Computational results using the present multi-scale model are well compared with the existing ones. Especially it is shown that the typical characteristics of heart mechanics, such as pressure volume relation, stroke volume and ejection fraction, can be generated by the present multi-scale cardiovascular model, covering from cardiac cells to circulation system.

Modeling of the Powertrain System and the Vehicle Body for the Analysis of the Driving Comfortability (승차감 해석을 위한 동력전달계와 차량계의 모델링)

  • Park, Jin-Ho;Lee, Jang-Mu;Jo, Han-Sang;Gong, Jin-Hyeong;Park, Yeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.926-936
    • /
    • 2000
  • Actual and strict definition of the shift quality for the powertrain system equipped an automatic transmission must be understood through the acceleration change of the vehicle body, which the driver directly feels as a shift shock. For this reason, it is necessary to concurrently analyze the characteristics of the powertrain system and the vehicle body. This paper presents the mathematical model of the vehicle body, which is based on the equivalent lumped system, to append to the developed model of the powertrain system. The concept of tire slip is also introduced for the experimental relationship between tire/road and driving force. Using the developed dynamic simulation programs, shift transients characteristics are analyzed. Theoretical results are compared with experimental ones from real car tests in equal conditions in order to prove the validity of presented model. In these tests, the system to measure the vehicle acceleration is used with various speeds and engine throttle sensors. It is expected that the presented modeling techniques can provide good predictions of the vehicle driving comfortability.

Development and Verification of AMBIKIN2D, A Two Dimensional Kinetics Code for Fluid Fuel Reactors (유동핵연료원자로를 위한 이차원 동특성 코드 AMBIKIN2D 개발 및 검증)

  • Lee, Young-Joon;Oh, See-Kee
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • The neutron kinetic analysis methods for the molten-salt reactors are quite different from those for conventional solid-fuel reactors, which do not take into account the flowing-fuel-induced neutronics effects. Therefore, for dynamics and safety analyses of the molten-salt reactor systems, the conventional kinetics codes would not be appropriate to accurately predict its transient behaviors. A point-kinetics with flowing- fuel model has been used to assess the fluid-fuel reactor system safety, but recognized as not to be sufficient to simulate spatial distributions of delayed-neutron precursors and neutron populations during transients for given detail reactor models. In order to meet this requirement, AMBIKIND, a 2-group, 2-dimensional neutron kinetics code suitable for the molten-salt reactor systems was developed. This paper explains the code's theoretical and numerical descriptions and, as a part of its verification, includes some simulation results of MSRE stability experiments. Even though the present reactor model does not include the recirculation effect of the fuel-salt through the reactor system, the AMBIKIN2D code should be able to predict the power and phase shift at various power levels and reactivity insertions with better accuracy.

A Study on the Turbopump Rotordynamic Characteristics due to Bearing Housing Structural Flexibility (베어링 하우징의 구조 유연성에 따른 터보펌프 회전체동역학 특성 연구)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • A rotordynamic analysis is performed for a turbopump of 7 ton class liquid rocket engine considering bearing housing structural flexibility. Stiffness and damping characteristics of ball bearings and pump noncontact seals are reflected in a rotordynamic model. A dynamic model of bearing housing with lumped mass and stiffness is also applied to the rotordynamic analysis. Rotor critical speed and onset speed of instability are predicted from synchronous rotor mass unbalance response and complex eigenvalue analyses. The bearing housing structural flexibility effect on rotordynamic characteristics is investigated for both of bearing loaded and unloaded conditions respectively. From the numerical analysis, it is found that the effect of the housing structural flexibility significantly reduces the rotor critical speed and onset speed of instability.