• 제목/요약/키워드: Luminous Efficiency

검색결과 387건 처리시간 0.025초

LED 조명용 히트싱크 방열기 설계를 위한 냉각성능 평가 (Evaluation on the Cooling Performance to Design Heat sinks for LED lightings)

  • 정태성;강환국
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.778-784
    • /
    • 2012
  • In comparison with some other light sources, LED has merits such as increased life expectancy, fast response, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED has widely used in many industrial fields such as automotive, aviation, display, transportation and special lighting applications. Since the high heat generation of LED chips can cause a reduction in lifetime, degradation of luminous efficiency, and variation of color temperature, studies have been carried out on the optimization of LED packaging and heat sinks. In this study, experiments on measuring the heat generation rate of LED and the cooling performance of a heat sink were carried for analyzing the thermal characteristics of LED lighting system in free convection. From the results, dimensionless correlation on the cooling performance of heat sink in natural convection was proposed with Nusselt number and Rayleigh number as a guideline for designing cooling device of LED lightings.

Enhancing Performance of 1-aminopyrene Light-Emitting Diodes via Hybridization with ZnO Quantum Dots

  • Choi, Jong Hyun;Kim, Hong Hee;Choi, Won Kook
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.238-243
    • /
    • 2022
  • In this study, a pyrene-core single molecule with amino (-NH2) functional group material was hybridized using ZnO quantum dots (QDs). The suppressed performance of the 1-aminopyrene (1-PyNH2) single molecule as an emissive layer (EML) in light-emitting diodes (LEDs) was exploited by adopting the ZnO@1-PyNH2 core-shell structure. Unlike pristine 1-PyNH2 molecules, the ZnO@1-PyNH2 hybrid QDs formed energy proximity levels that enabled charge transfer. This result can be interpreted as an improvement in surface roughness. The uniform and homogeneous EML alleviates dark-spot degradation. Moreover, LEDs with the ITO/PEDOT:PSS/TFB/EML/TPBi/LiF/Al configuration were fabricated to evaluate the performance of two emissive materials, where pristine-1-PyNH2 molecules and ZnO@1-PyNH2 QDs were used as the EML materials to verify the improvement in electrical characteristics. The ZnO@1-PyNH2 LEDs exhibited blue luminescence at 443 nm (FWHM = 49 nm), with a turn-on voltage of 4 V, maximum luminance of 1500 cd/m2, maximum luminous efficiency of 0.66 cd/A, and power efficiency of 0.41 lm/W.

전파 정류 교류 구동 방식에 의한 OLED의 전계발광 특성 (Electroluminescence Characteristics of OLED by Full-Wave Rectification Alternating Current Driving Method)

  • 서정현;주성후
    • 한국재료학회지
    • /
    • 제32권7호
    • /
    • pp.320-325
    • /
    • 2022
  • Single OLED and tandem OLED was manufactured to analyze the electroluminescence characteristics of DC driving, AC driving, and full-wave rectification driving. The threshold voltage of OLED was the highest in DC driving, and the lowest in full-wave rectification driving due to an improvement of current injection characteristics. The luminance at a driving voltage lower than 10.5 V (8,534 cd/m2) of single OLED and 20 V (7,377 cd/m2) of a tandem OLED showed that the full-wave rectification drive is higher than that of DC drive. The luminous efficiency of OLED is higher in full-wave rectification driving than in DC driving at low voltage, but decrease at high voltage. The full-wave rectification power source may obtain higher current density, higher luminance, and higher current efficiency than the AC power source. In addition, it was confirmed that the characteristics of AC driving and full-wave rectification driving can be predicted from DC driving characteristics by comparing the measured values and calculated values of AC driving and full-wave rectification driving emission characteristics. From the above results, it can be seen that OLED lighting with improved electroluminescence characteristics compared to DC driving is possible using full-wave rectification driving and tandem OLED.

CCFL구동용 Push-Pull 방식 공진형 인버터의 특성해석 (Design and analysis of Push-pull type Resonant Inverter for CCFL Drive)

  • 김철진;지재근;장재완;이희흥;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1184-1186
    • /
    • 2002
  • Recently, according to the industrial development relative to multimedia, demand of display system is radically increase, thus development for power supply of back-lighting is advanced lively. Fluorescent lamp operated at high frequency by the electronic ballast provide benefits like unnoticeable flicker effect and higher luminous efficiency. This paper presents analysis of Push-Pull type resonant inverter for CCFL drive for stable characteristic and life improvement of fluorescent lamp operated at high frequency. Also it has proposed design procedure of Current-Fed type resonant inverter. On the basis of equivalent circuit, component characteristic and suitable region of operation frequency from simulation using Matlab and Pspice is predicted. Suitability of applied equivalent model and validity of design process from the experimental results with CCFL inverter.

  • PDF

The Characteristics Depending on the Annealing Conditions in the PDP Vacuum In-line Sealing

  • Kwon, Sang-Jik;Kim, Jee-Hoon;Jang, Chan-Kyu;Park, Sung-Hyun;Whang, Ki-Woong;Lee, Kyung-Wha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.703-706
    • /
    • 2004
  • This paper deals with the various sealing conditions in a vacuum and the discharge characteristics. The MgO thin film is prepared by e-beam evaporation method. Sealing process was performed in a vacuum at panel temperature of 430 $^{\circ}C$. We find the cracks on the MgO film surface, which results in higher discharge voltage and lower luminous efficiency. The vacuum in-line sealing technology does not require additional annealing process but induces the MgO cracks because of the high temperature sealing cycle in a vacuum. Therefore we modify the vacuum in-line sealing cycle which the MgO cracks are not found and the good characteristics of plasma displays are found in higher sealing pressure at sealing temperature of 430 $^{\circ}C$.

  • PDF

Suppression of MgO hydration using Self-Assembled Monolayers

  • Lee, Kyung-Wha;Kim, Tae-Jun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.533-535
    • /
    • 2004
  • We suggest the use of a self-assembled ultra thin organic film that can suppress the hydration of MgO protective layer in AC-PDP. We analyzed the degree of hydration of MgO layer in AC-PDP by XPS when exposed to air after vacuum deposition which proved the effectiveness of the hydration prevention. We also made PDP test panels to demonstrate the improvement in the luminance and luminous efficiency when the hydration of MgO surface is suppressed by the use of self-assembled ultra thin organic film.

  • PDF

Application of $Sr_3SiO_5$:Eu yellow phosphor for white light-emitting diodes

  • Park, Joung-Kyu;Kim, Chang-Hae;Park, Hee-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.676-678
    • /
    • 2004
  • In order to develop new yellow phosphor that emit efficiently under the 450 - 470 nm excitation range, we have synthesized a $Eu^{2+}$-activated $Sr_3SiO_5$ yellow phosphor and investigated an attempt to develop white LEDs by combining it with a InGaN blue LED chip (460 nm). Two distinct emission bands from the InGaN-based LED and the $Sr_3SiO_5$:Eu phosphor are clearly observed at 460 nm and at 570 nm, respectively. These two emission bands combine to give a spectrum that appears white to the naked eye. Our results showed that InGaN (460 nm chip)-based $Sr_3SiO_5$:Eu exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.

  • PDF

전기인광을 이용한 고효율 적색 유기 전기발광소자 (Efficient red organic light-emitting devices based on electrophosphorescence)

  • 송원준;강기욱;박수연;설창;이창희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.121-124
    • /
    • 2000
  • Achieving red light-emitting diodes with high quantum and luminous efficiency is required to fabricate the full-color organic electroluminescence display. In this work, we report that devices with 2.3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine palladium (II) (PdOEP), doped into tris(8-Hydroxyquinolinato)-aluminum (III) (Alq3) show a narrow deep red emission (670nm). In addition, PdOEP has been used as host material in which red dyes such as 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) doped in order to fabricate efficient red-emitting diodes.

  • PDF

A study on the characteristics of SrS:Cu TFEL devices prepared by hot wall deposition

  • Lee Sang-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.514-519
    • /
    • 2006
  • SrS:Cu, Cl thin films have been grown by the hot wall technique with S furnace placed on the outside of the growth chamber in order to investigate the crystallographic and optical characteristics. The films have a good crystallinity independent of CuCl wall temperature and PL characteristics showed a peak assigned by the transition form $3d^94s^1\;(^3Eg)$ to $3d^{10}\;(^1A_{1g})$ of $Cu^+$ center. It has also been found that. from the PLE spectra, $Cu^+$ luminescent centers are doped in the host materials. The EL emission from SrS:Cu-based device showed a greenish-blue but shifted to short wavelength compared to SrS:Ce-based EL. The device was obtained the maximum luminance of $110cd/m^2$ and the maximum luminous efficiency of $0.1\;lm/W$ at $V_{40}$.

원통형 방전소자의 방전특성 연구 (Numerical Study on the Discharge Characteristics of Cylindrical Discharge Devices)

  • 서정현;신범재
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.980-986
    • /
    • 2013
  • In this paper, the discharge characteristics of ac-type cylindrical discharge devices with diameters (D) in the $50{\sim}400{\mu}m$ range have been investigated numerically. The cylindrical devices have much lower breakdown voltages compared to the coplanar electrode structures. The breakdown voltage of the cylindrical structures increases with the decrease of diameters in $50{\sim}100{\mu}m$ range. In $100{\sim}200{\mu}m$ range, however, the breakdown voltage decreases slightly with the decrease of diameters. Also, as the diameter gets smaller, the electron heating efficiency is greatly improved.