• Title/Summary/Keyword: Luminescent properties

Search Result 260, Processing Time 0.033 seconds

Optical Properties of the Eu2+ Doped Li2SrSiO4-αNα (Li2SrSiO4-αNα에 첨가된 Eu2+의 광학적 특성)

  • Namkhai, Purevdulam;Kim, Taeyoung;Woo, Hyun-Joo;Jang, Kiwan;Jeong, Jung Hyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1196-1202
    • /
    • 2018
  • $Li_2Sr_{1-x}Eu_xSiO_{4-{\alpha}}N_{\alpha}$ ($Li_2SrSiO_{4-{\alpha}}N_{\alpha}:Eu^{2+}$) phosphors were synthesized by using a solid state reaction (SSR) method with submicron $Si_3N_4$ and nano $Si_3N_4$ powders as the sources of Si and N, and the optical properties of those phosphors were studied. The studied phosphors showed efficient excitation characteristics over the broad range from 230 to 530 nm. Also, They showed broad emission spectra covering a range from 500 to 700 nm, with a peak at 568 nm, which was shifted longer wavelength by 18 nm as compared with that of commercial $YAG:Ce^{3+}$. Combined with a 450 nm blue LED chip, the results support the application of the $Li_2SrSiO_{4-{\alpha}}N_{\alpha}:Eu^{2+}$ phosphor as a luminescent material for a white-light source thaat is warmer than the commercial $YAG:Ce^{3+}$ white-light source. In addition, the $Li_2SrSiO_{4-{\alpha}}N_{\alpha}$ phosphors prepared from a submicron $Si_3N_4$ powder was found to emit a previously unreported self-activated luminescence in $Li_2SrSiO_{4-{\alpha}}N_{\alpha}$.

Synthesis and luminescent properties of a new green $CaZrO_3:\;HO_{3+}$ long persistent phosphors (녹색 발광의 $CaZrO_3:\;HO_{3+}$ 축광성 형광체의 합성 및 발광 특성)

  • Park, Byeong-Seok;Choi, Jong-Keon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2008
  • Novel green long persistent phosphors of $CaZrO_3$ : $HO_{3+}$ have been synthesized at high temperature with weak reduction atmosphere by traditional solid state reaction method. The role of $H_3BO_3$ as flux and the suitable concentration of Ho as activator on the $CaZrO_3$ : $HO_{3+}$ long persistent phosphors has been investigated. Crystals of $HO_{3+}$ doped $CaZrO_3$ long persistent phosphores were characterized by fluorescence spectrophotometer and photoluminescence (PL). The main emission spectra of 546 nm peak was revealed through synthesizing at high temperature in $N_2$ gas atmosphere. The after glow emission spectra of $CaZrO_3$ : $HO_{3+}$ long persistent phosphores arise at 546 nm peak of narrow range. because that revealed pure green color. Green long persistent phosphors have been observed in the system for over 5 h after UV irradiation (254 nm). The main emission peak was ascribed to $HO_{3+}$ ions transition from $^5F_4$, $^5S_2{\to}^5I_3$, and the after glow may be ascribed to the trap centers in the $CaZrO_3$ host lattice.

Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화)

  • Jung, Kyeong Youl;Park, Jea Hoon;Song, Shin Ae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.319-325
    • /
    • 2015
  • Submicron-sized $CeO_2:Er^{3+}/Yb^{3+}$ upconversion phosphor particles were synthesized by spray pyrolysis, and their luminescent properties were characterized by changing the concentration of $Er^{3+}$ and $Yb^{3+}$. $CeO_2:Er^{3+}/Yb^{3+}$ showed an intense green and red emission due to the $^4S_{3/2}$ or $^2H_{11/2}{\rightarrow}^4I_{15/2}$ and $^4F_{9/2}{\rightarrow}^4I_{15/2}$ transition of $Er^{3+}$ ions, respectively. In terms of the emission intensity, the optimal concentrations of Er and Yb were 1.0 % and 2.0%, respectively, and the concentration quenching was found to occur via the dipole-dipole interaction. Upconversion mechanism was discussed by using the dependency of emission intensities on pumping powers and considering the dominant depletion processes of intermediate energy levels for the red and green emission with changing the $Er^{3+}$ concentration. An energy transfer from $Yb^{3+}$ to $Er^{3+}$ in $CeO_2$ host was mainly involved in ground-state absorption (GSA), and non-radiative relaxation from $^4I_{11/2}$ to $^4I_{13/2}$ of $Er^{3+}$ was accelerated by the $Yb^{3+}$ co-doping. As a result, the $Yb^{3+}$ co-doping led to greatly enhance the upconversion intensity with increasing ratios of the red to green emission. Finally, it is revealed that the upconversion emission is achieved by two photon processes in which the linear decay dominates the depletion of intermediate energy levels for green and red emissions for $CeO_2:Er^{3+}/Yb^{3+}$ phosphor.

Spectra Responsibility of Quantum Dot Doped Organic Liquid Scintillation Dosimeter for Radiation Therapy

  • Kim, Sung-woo;Cho, Byungchul;Cho, Sangeun;Im, Hyunsik;Hwang, Ui-jung;Lim, Young Kyoung;Cha, SeungNam;Jeong, Chiyoung;Song, Si Yeol;Lee, Sang-wook;Kwak, Jungwon
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • The aim is to investigate the spectra responsibilities of QD (Quantum Dot) for the innovation of new dosimetry application for therapeutic Megavoltage X-ray range. The unique electrical and optical properties of QD are expected to make it a good sensing material for dosimeter. This study shows the spectra responsibility of toluene based ZnCd QD and PPO (2.5-diphenyloxazol) mixed liquid scintillator. The QDs of 4 sizes corresponding to an emission wavelength (ZnCdSe/ZnS:$440{\pm}5nm$, ZnCdSeS:470, 500, $570{\pm}5nm$) were utilized. A liquid scintillator for control sample was made of toluene, PPO. The Composition of QD loaded scintillators are about 99 wt% Toluene as solvent, 1 wt% of PPO as primary scintillator and 0.05, 0.1, 0.2 and 0.4 wt% of QDs as solute. For the spectra responsibility of QD scintillation, they were irradiated for 30 second with 6 MV beam from a LINAC ($Infinity^{TM}$, Elekta). With the guidance of 1.0 mm core diameter optical fiber, scintillation spectrums were measured by a compact CCD spectrometer which could measure 200~1,000 nm wavelength range (CCS200, Thorlabs). We measured the spectra responsibilities of QD loaded organic liquid scintillators in two scintillation mechanisms. First was the direct transfer and second was using wave shifter. The emission peaks from the direct transfer were measured to be much smaller luminescent intensity than based on the wavelength shift from the PPO to QDs. The emission peak was shifted from PPO emission wavelength 380 nm to each emission wavelength of loaded QD. In both mechanisms, 500 nm QD loaded samples were observed to radiate in the highest luminescence intensity. We observed the spectra responsibility of QD doped toluene based liquid scintillator in order to innovate QD dosimetry applicator. The liquid scintillator loading 0.2 wt% of 500 nm emission wavelength QD has most superior responsibility at 6 MV photon beam. In this study we observed the spectra responsibilities for therapeutic X-ray range. It would be the first step of innovating new radiation dosimetric methods for radiation treatment.

Synthesis and Luminescent Properties of Y(As, Nb, P, V)O4:Eu3+ Red Phosphors by Combinatorial Chemistry Method (조합화학을 이용한 Y(As, Nb, P, V)O4:Eu3+ 적색형광체의 합성 및 광 특성 분석)

  • Jeon, Il Un;Son, Gi Seon;Park, Hui Dong;Ryu, Seung Gon
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.577-588
    • /
    • 2001
  • Eu doped YRO$_4$ (R=As, Nb, P, V) red phosphors were prepared by the combinatorial chemistry method. The quaternary material library of tetrahedron-type composition array was designed to investigate the luminescence of the host material under UV and VUV excitations (254, 147 nm). The photoluminescent characteristics of the samples were comparable to the commercially available red phosphors such as (Y, Gd)BO$_3$: $Eu^{3+}$ and Y$_2$O$_3$: In view of the luminescence yield, V rich region was found to be optimum under UV excitation. But the results under VUV excitation were different from those of UV excitation, the samples of the composition containing a large amount of P shows the highest luminescence. Especially, higher luminescence was obtained in $Y_{0.9}$(A$S_{0.06}$N$B_{0.06}P_{0.83}V_{0.06}$) O$_4$: $Eu_{0.1}$ phosphors than commercial (Y, Gd)BO$_3$red phosphors under 147 nm excitation.

  • PDF

Luminescence Properties of La2MoO6:RE3+ (RE = Eu, Sm) Phosphors Subjected to the Different Concentrations of Activator Ions (활성제 이온의 농도 변화에 따른 La2MoO6:RE3+ (RE = Eu, Sm) 형광체의 발광 특성)

  • Kim, Gayeon;Shin, Johngeon;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.282-288
    • /
    • 2017
  • $Eu^{3+}$- or $Sm^{3+}$-doped $La_2MoO_6$ phosphors were synthesized with different concentrations of activator ions via a solid-state reaction. The X-ray diffraction patterns exhibited that crystalline structures of all the phosphors were tetragonal systems with the dominant peak occurring at (103) plane, irrespective of the concentration and the type of activator ions. The crystallites showed the pebble-like crystalline shapes and the average crystallite size increased with a tendency to agglomerate as the concentration of $Eu^{3+}$ ions increased. The excitation spectra of $Eu^{3+}$-doped $La_2MoO_6$ phosphors contained an intense charge transfer band centered at 331 nm in the range of 250-370 nm and three weak peaks at 381, 394, and 415 nm, respectively, due to the $^7F_0{\rightarrow}^5L_7$, $^7F_0{\rightarrow}^5L_6$, and $^7F_0{\rightarrow}^5D_3$ transitions of $Eu^{3+}$ ions. The emission spectra under excitation at 331 nm exhibited a strong red band centered at 620 nm and two weak bands at 593 and 704 nm. As the concentration of $Eu^{3+}$ increased from 1 to 20 mol%, the intensities of all the emission bands gradually increased. For the $Sm^{3+}$-doped $La_2MoO_6$ phosphors, the emission spectra consisted of an intense emission band at 607 nm arising from the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ transition and three relatively small bands at 565, 648, and 707 nm originating from the $^4G_{5/2}{\rightarrow}^6H_{5/2}$, $^4G_{5/2}{\rightarrow}^6H_{9/2}$, and $^4G_{5/2}{\rightarrow}^6H_{11/2}$ transitions of $Sm^{3+}$, respectively. The intensities of all the emission bands approached maxima when concentration of $Sm^{3+}$ ions was 5 mol%. These results indicate that the optimum concentrations for highly-luminescent red and orange emission are 20 mol% of $Eu^{3+}$ and 5 mol% of $Sm^{3+}$ ions, respectively.

Structural and Luminescent Properties of Gd2WO6:RE3+ (RE = Dy, Sm, Dy/Sm) Phosphors for White Light Emitting Devices (백색광 소자 응용을 위한 Gd2WO6:RE3+ (RE = Dy, Sm, Dy/Sm) 형광체의 구조 및 발광 특성)

  • Park, Giwon;Jung, Jaeyong;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.131-137
    • /
    • 2020
  • A series of Dy3+, Sm3+, and Dy3+/Sm3+ doped Gd2WO6 phosphors were synthesized by the conventional solid-state reaction. The X-ray diffraction patterns revealed that all of the diffraction peaks could be attributed to the monoclinic Gd2WO6 crystal structure, irrespective of the type and the concentration of activator ions. The photoluminescence (PL) excitation spectra of Dy3+-doped Gd2WO6 phosphors contained an intense charge transfer band centered at 302 nm in the range of 240-340 nm and two weak peaks at 351 and 386 nm. Under an excitation wavelength of 302 nm, the PL emission spectra consisted of two strong blue and yellow bands centered at 482 nm and 577 nm. The PL emission spectra of the Sm3+-doped Gd2WO6 phosphors had a series of three peaks centered at 568 nm, 613 nm, and 649 nm, corresponding to the 6G5/26H5/2, 6G5/26H9/2, and 6G5/26H11/2 transitions of Sm3+, respectively. The PL emission spectra of the Dy3+- and Sm3+-codoped Gd2WO6 phosphors showed the blue and yellow emission lines originating from the 4F9/26H15/2 and 4F9/24H13/2 transitions of Dy3+ and reddish-orange and red emission bands due to the 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+. As the concentration of Sm3+ increased from 1 to 15 mol%, the intensities of two PL spectra emitted by the Dy3+ ions gradually decreased, while those of the three emission bands due to the Sm3+ ions slowly increased, thus producing the color change from white to orange. The CIE color coordinates of Gd2WO6:5 mol% Dy3+, 1 mol% Sm3+ phosphors were (0.406, 0.407), which was located in the warm white light region.

The Development of High Pressure Long Distance Fire-fighting Hose with Phosphorescent Performance (축광 성능을 갖는 고압용 장거리 호스 개발에 관한 연구)

  • Han, Yong-Taek;Na, Byung-Gyun;Choi, Jin-Seong;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.63-69
    • /
    • 2017
  • This study describes the development of a long-distance hose for ultra-high pressure operation, which can be used in conjunction with an ultra-high pressure pump and can be effectively applied to the fire suppression of high-rise buildings and a long, large tunnels. Also, it has phosphorescent properties, which can help to secure the withdrawal route of the fire-fighters when they are threatened by the fire. We developed an ultra-high pressure hose aiming at a pressure of 3 MPa and a flow rate of 2000 lpm and developed an ultra-high pressure fire hose that can withstand this very high pressure by using a double jacket, triple polyurethane coating and warf (Wp) of 52. In order to ensure the performance of the developed ultra-high pressure hose, its structure, appearance, leakage at high pressure, length and elongation were inspected by a certified certification agency, who also subjected it to a peeling test, friction test, breaking pressure test and free fall test. Also, it was studied in addition to the luminescent high-pressure hose for fire-fighting. In the phosphorescence test, the luminance measurement value was more than the reference value of the luminance test after 40 minutes, which confirmed that its performance was satisfactory for fire-fighting products. In the future, if such an ultra-high pressure fire hose were commercialized and applied in the field, it could contribute to securing improved fire suppression and safer exit from fires, as compared to the fire hoses currently used in the suppression of fires in skyscraper buildings and long tunnels.

Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성)

  • Jung, Kyeong Youl;Kim, Woo Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.620-626
    • /
    • 2015
  • $Ho^{3+}$ doped $SrAl_2O_4$ upconversion phosphor powders were synthesized by spray pyrolysis, and the crystallographic properties and luminescence characteristics were examined by varying activator concentrations and heattreatment temperatures. The effect of organic additives on the crystal structure and luminescent properties was also investigated. $SrAl_2O_4:Ho^{3+}$ powders showed intensive green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$. The optimal $Ho^{3+}$ concentration in order to achieve the highest luminescence was 0.1%. Over this concentration, emission intensities were largely diminished via a concentration quenching due to dipole-dipole interaction between activator ions. According to the dependence of emission intensity on the pumping power of a laser diode, it was clear that the upconversion of $SrAl_2O_4:Ho^{3+}$ occurred via the ground state absorption-excited state absorption processes involving two near-IR photons. Synthesized powders were monoclinic as a major phase, having some hexagonal phase. The increase of heat-treatment temperatures from $1000^{\circ}C$ to $1350^{\circ}C$ led to crystallinity enhancement of monoclinic phase, reducing hexagonal phase. The hexagonal phase, however, did not disappear even at $1350^{\circ}C$. When both citric acid (CA) and ethylene glycol (EG) were added to the spray solution, the resulting powders had pure monoclinic phase without forming hexagonal phase, and led to largely enhancement of crystallinity. Also, N,N-Dimethylformamide (DMF) addition to the spray solution containing both CA and EG made it possible to effectively reduce the surface area of $SrAl_2O_4:Ho^{3+}$ powders. Consequently, the $SrAl_2O_4:Ho^{3+}$ powders prepared by using the spray solution containing CA/EG/DMF mixture as the organic additives showed about 168% improved luminescence compared to the phosphor prepared without organic additives. It was concluded that both the increased crystallinity of high-purity monoclinic phase and the decrease of surface area were attributed to the large enhancement of upconversion luminescence.

Synthesis and Screening of the System $SrO-Gd_2O_3-Al_2O_3$Doped with Tb by Polymerized-Complex Combinatorial Chemistry (고분자 착체 조합 화학법을 이용한 Tb이 첨가된 $SrO-Gd_2O_3-Al_2O_3$계 형광물질의 합성 및 탐색)

  • Jeong, Yang Sun;Kim, Chang Hae;Park, Hee Dong;Park, Joon Taik;Kang, Sung Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.461-469
    • /
    • 2001
  • The combinatorial approach has been applied to discover and optimize the composition of the novel or enhanced materials. In this study, we screened the optimum composition of the system SrO-Gd$_2$O$_3$-Al$_2$O$_3$ doped with $Tb^{3+}$ by a polymerized-complex combinatorial chemistry method. Mixtures with compositions of Sr, Gd and Al component that is in the range from 0 to 1 in about 0.05 increments could be tested. The sample powders were synthesized by a polymerized complex method. To prepare appropriately polymeric precursors, we used the metallic nitrates, citric acid and ethylene glycol. The luminescence properties of the synthesized powders are investigated using the UV and VUV (Vacuum-UV: 147 nm) photoluminescence spectrometer. In addition, the crystallinity and morphology of powder were monitored by X-ray diffraction spectrometer and scanning electron microscopy. In result of VUV PL works, there are good luminescent samples with the composition of 0.595 < x < 0.733 and 0.016 < y < 0.017 in Gd1-x-yAlxTbyO$\delta$ and 0.049 < x < 0.064 and 0.02 < y < 0.039 in $Sr_xAl_{1-x-y}Tb_yO_$\delta$$, their materials can be applicable to plasma display panels as the green phosphor.

  • PDF