• 제목/요약/키워드: Luminescent lanthanide complexes

검색결과 11건 처리시간 0.023초

Recent Progress in Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Kim, Hwan-Kyu;Oh, Jae-Buem;Baek, Nam-Seob;Roh, Soo-Gyun;Nah, Min-Kook;Kim, Yong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권2호
    • /
    • pp.201-214
    • /
    • 2005
  • We have designed and developed novel luminescent lanthanide complexes for advanced photonics applications. Lanthanide(III) ions (Ln$^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins and naphthalenes. The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to Ln$^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of Ln$^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent Ln$^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent Ln$^{3+}$ complexes, yielding novel Ln(III)-cored dendrimer complex. The novel Ln(III)-cored dendrimer complex has much higher PL intensity than the corresponding simple complex, due to the efficient site-isolation effect. In this article, we will deal with recent progress in the synthesis and photophysical studies of inert and stable luminescent Ln$^{3+}$ complexes for advanced photonics applications. Also, our review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to Ln$^{3+}$ ions with Ln(III)-chelated prototype complexes.

Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Eom, Yu Kyung;Ryu, Jung Ho;Kim, Hwan Kyu
    • Rapid Communication in Photoscience
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2012
  • Luminescent lanthanide complexes have been overviewed for advanced photonics applications. Lanthanide(III) ions ($Ln^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins, naphthalenes, anthracene, push-pull diketone derivatives and boron dipyrromethene(bodipy). The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to $Ln^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of $Ln^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent $Ln^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent $Ln^{3+}$ complexes, yielding novel $Ln^{3+}$-cored dendrimer complex such as metalloporphyrins, naphthalenes, and anthracenes bearing the Fr$\acute{e}$chet aryl-ether dendrons, namely, ($Er^{3+}-[Gn-Pt-Por]_3$ (terpy), $Er^{3+}-[Gn-Naph]_3$(terpy) and $Er^{3+}-[Gn-An]_3$(terpy)). These complexs showed much stronger near-IR emission bands at 1530 nm, originated from the 4f-4f electronic transition of the first excited state ($^4I_{13/2}$) to the ground state ($^4I_{15/2}$) of the partially filled 4f shell. A significant decrease in the fluorescence of metalloporphyrins, naphthalenes and anthracene ligand were accompanied by a strong increase in the near IR emission of the $Ln^{3+}$ ions. The near IR emission intensities of $Ln^{3+}$ ions in the lanthanide(III)-encapsulated dendrimer complexes were dramatically enhanced with increasing the generation number (n) of dendrons, due to the site-isolation and the light-harvesting(LH) effects. Furthermore, it was first attempted to distinguish between the site-isolation and the light-harvesting effects in the present complexes. In this review, synthesis and photophysical studies of inert and stable luminescent $Ln^{3+}$ complexes will be dealt for the advanced photonics applications. Also, the review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to $Ln^{3+}$ ions with $Ln^{3+}$-chelated prototype complexes.

Preparation and Luminescent Properties of a Novel Carbazole Functionalized Bis-β-diketone Ligand and Corresponding Eu(III) and Tb(III) Complexes

  • Zhang, Wei;Liu, Chang-Hui;Tang, Rui-Ren;Tang, Chang-Quan
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2213-2216
    • /
    • 2009
  • A novel carbazole functionalized bis-$\beta$-diketone type organic ligand, 1,1′-(2,6-bispyridyl)bis-3-(9-ethylcarbazole- 3-yl)-1,3-propanedione ($H_2L$) and its corresponding lanthanide complexes $Eu_2(L)_3\;and\;Tb_2(L)_3$ were successfully prepared. The ligand and complexes were characterized in detail based on FT-IR spectra, $^1H$ NMR and elemental analysis. The observed UV-Vis absorption and photoluminescence properties of the complexes were investigated, it shows that the Eu(III) and Tb(III) ions can be sensitized efficiently by the ligand ($H_2L$) to some extent, in particular, the complex $Tb_2(L)_3$ exhibits a more excellent luminescence property than the Eu(III) complex. Meanwhile, the introduction of the carbazole moiety can enlarge the $\Pi$-conjugated system of the ligand and enhance the luminescent intensity of the complexes. The results show that the complexes would be used as excellent luminescent materials.

Crystal Structures and Luminescence Properties of [Ln(NTA)2·H2O]3- Complexes (Ln = Sm3+, Eu+3, Gd3+, Tb3+, Ho3+, and NTA = Nitrilotriacetate)

  • Kang, Jun-Gill;Kang, Hee-Jung;Jung, Jae-Sun;Yun, Sock-Sung;Kim, Chong-Hyeak
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권6호
    • /
    • pp.852-858
    • /
    • 2004
  • Crystal structures of lanthanide complexes with NTA (NTA = nitrilotriacetate) are reported. The complexes of $[Ln(NTA)_2{\cdot}H_2O]^{3-}$ (Ln = Sm, Eu, Gd, Tb and Ho) crystallize in the orthorhombic space group Pccn. In the structures, the trivalent lanthanide ions are completely encapsulated via coordination to the two nitrogen atoms and the six carboxylate oxygen atoms of the two NTA ligands, and one water oxygen atoms. The complexes form a slightly distorted capped-square-antiprism polyhedron. Of the complexes, $[Eu(NTA)_2{\codt}H_2O]^{3-}$,\;[Tb(NTA)_2{\cdot}H_2O]^{3-}\;and\;[Dy(NTA)_2{\cdot}H_2O]^{3-}$ excited at the 325 He-Cd line produce very characteristic luminescence features, arising mostly from the f ${\to}$ f transitions. The absolute quantum yields of these complexes are determined at room temperature. Surprisingly, the $[Dy(NTA)_2{\cdot}H_2O]^{3-}$ complex is more luminescent than the $[Eu(NTA)_2{\cdot}H_2O]^{3-}\;and\;[Tb(NTA)_2{\cdot}H_2O]^{3-}$ complexes.

Energy Transfer Pathway in Luminescent Lanthanide Complexes Based on Dansyl-N-methylaminobenzoic Acid through Intramolecular Charge Transfer State for Near Infrared Emission

  • Roh, Soo-Gyun;Baek, Nam-Seob;Kim, Yong-Hee;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1249-1255
    • /
    • 2007
  • We have investigated the photophysical properties of dansyl-N-methylaminobenzoic acid (DABAH) as a ligand and its lanthanide (Ln3+)-cored complexes (Ln3+-(DABA)3(terpy)) in order to determine the main energy transfer pathway for sensitized near infrared emission of Ln3+ ions (Ln3+ = Nd3+ and Er3+) in Ln3+- (DABA)3(terpy). The fluorescence spectrum of DABAH shows a large Stokes shift with increasing solvent polarity. This large Stokes shift might be due to the formation of a twisted intramolecular charge transfer (TICT) state, as demonstrated by the large dipole moment in the excited state. It is in good agreement with the result that the phosphorescence even in the Gd3+-cored complex based on the DABAH ligand was not observed, maybe due to the highly forbidden character of the S1 → T1 transition in the DABAH ligand. A short decay component (ca. 1 ns) was observed in Er3+-(DABA)3(terpy) whereas the fluorescence lifetimes of DABAH and its Gd3+-(DABA)3(terpy) are observed about ~10 ns. The short component could be originated from the energy transfer process between the ligand and the Ln3+ ion. Based on the fluorescence of DABAH its Ln3+- (DABA)3(terpy), the sensitization of Ln3+ luminescence in the Ln3+-(DABA)3(terpy) takes place by the energy transfer via the TICT state of DABAH in the excited singlet state rather than via the excited triplet state.

A Series of 3D Lanthanide Complexes Containing (La(III), Sm(III) and Gd(III)) Metal-organic Frameworks: Synthesis, Structure, Characterization and Their Luminescent Properties

  • Zhang, Huai-Min;Yang, Hao;Wu, Lan-Zhi;Song, Shuang;Yang, Li-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3777-3787
    • /
    • 2012
  • Three kinds of 3D isomorphous and isostructural coordination polymers, namely, $\{[Ln_2(PDA)_3(H_2O)_3]{\cdot}0.25H_2O\}_{\infty}$ (Ln = La(1), Sm(2), and Gd(3)) ($PDA^{2-}$ = pyridine-2,6-dicarboxylate anion) have been synthesized under hydrothermal conditions and characterized by elemental analyses, IR spectroscopy, thermal analyses and single crystal X-ray diffraction. In these MOFs, Ln(III) centers adopt eight-coordinated and nine-coordinated with the $N_1O_7$ and $N_2O_7$ donor sets to construct distorted trianglar dodecahedron geometry and tricapped trigonal prism configurations, respectively. Based on the building block of tetranuclear homometallic $Ln_4C_4O_8$ unit (16-membered ring), 1-3 are connected into highly ordered 2D sheets via O-C-O linkers and further constructed into 3D architectures through hydrogen bonds. Crystallographic parameters suggest that the lanthanide contraction effect exist in these coordination polymers. Luminescent properties of the lanthanide-based MOFs (metal-organic frameworks) have been measured at room temperature, which reveal that they presenting ionselective characters toward certain metals, such as $Mg^{2+}$, $Cd^{2+}$ and $Pb^{2+}$ ions.

EuIII-1-Naphthoate Complex with N-Donor Ligand as a New White Luminescent Single Molecular Material

  • Eom, Yu Kyung;Biju, Silvanose;Kim, Hwan Kyu
    • Rapid Communication in Photoscience
    • /
    • 제2권1호
    • /
    • pp.34-37
    • /
    • 2013
  • Two novel antenna complexes of $Eu^{III}$ with 1-naphthoic acid (NA) as primary ligand and two aromatic N-donor ligands namely N-hexyl-N-(pyridin-2-yl) pyridin-2-amine (1) and 4-((dipyridin-2-ylamino)methyl)benzoic acid (2) have been synthesized and characterized by various spectroscopic techniques. The room-temperature (298 K) photoluminescence spectrum of $Eu^{III}$ complexes composed of typical line like emissions, assigned to transitions between the first excited state $^5D_0$ to the $^7F_J$ (J = 0-4), resulting in red emission along with the residual emission from the 1-naphthoic acid moiety in the blue region. The determined CIE color coordinate value for the complex 2 is (x = 0.36, y = 0.34), which is in white region.

Lanthanide-Cored Supramolecular Systems with Highly Efficient Light-Harvesting Dendritic Arrays towards Tomorrow′s Information Technology

  • Kim, Hwan-Kyu;Roh, Soo-Gyun;Hong, Kyong-Soo;Ka, Jae-Won;Baek, Nam-Seob;Oh, Jae-Buem;Nah, Min-Kook;Cha, Yun-Hui;Jin Ko
    • Macromolecular Research
    • /
    • 제11권3호
    • /
    • pp.133-145
    • /
    • 2003
  • We have developed novel lanthanide-cored supramolecular systems with highly efficient light-harvesting dendritic arrays for integrated planar waveguide-typed amplifiers. Er$^{3+}$ ions were encapsulated by the supramolecular ligands, such as porphyrins and macrobicyclics. The supramolecular ligands have been designed and synthesized to provide enough coordination sites for the formation of stable Er(III)-chelated complexes. For getting a higher optical amplification gain, also, the energy levels of the supramolecular ligands were tailored to maintain the effective energy transfer process from supramolecular ligands to erbium(III) ions. Furthermore, to maximize the light-harvesting effect, new aryl ether-functionalized dendrons as photon antennas have been incorporated into lanthanide-cored supramolecular systems. In this paper, molecular design, synthesis and luminescent properties of novel lanthanide-cored integrated supramolecular systems with highly efficient light-harvesting dendritic arrays will be discussed.d.