Lanthanide-Cored Supramolecular Systems with Highly Efficient Light-Harvesting Dendritic Arrays towards Tomorrow′s Information Technology

  • Kim, Hwan-Kyu (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Roh, Soo-Gyun (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Hong, Kyong-Soo (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Ka, Jae-Won (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Baek, Nam-Seob (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Oh, Jae-Buem (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Nah, Min-Kook (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Cha, Yun-Hui (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University) ;
  • Jin Ko (Center for Smart Light-Harvesting Materials and Department of Polymer Science & Engineering, Hannam University)
  • 발행 : 2003.06.01

초록

We have developed novel lanthanide-cored supramolecular systems with highly efficient light-harvesting dendritic arrays for integrated planar waveguide-typed amplifiers. Er$^{3+}$ ions were encapsulated by the supramolecular ligands, such as porphyrins and macrobicyclics. The supramolecular ligands have been designed and synthesized to provide enough coordination sites for the formation of stable Er(III)-chelated complexes. For getting a higher optical amplification gain, also, the energy levels of the supramolecular ligands were tailored to maintain the effective energy transfer process from supramolecular ligands to erbium(III) ions. Furthermore, to maximize the light-harvesting effect, new aryl ether-functionalized dendrons as photon antennas have been incorporated into lanthanide-cored supramolecular systems. In this paper, molecular design, synthesis and luminescent properties of novel lanthanide-cored integrated supramolecular systems with highly efficient light-harvesting dendritic arrays will be discussed.d.

키워드

참고문헌

  1. Plymer Sci. & Technol.(Polym. Soc. Korea) v.13 no.6 S. G. Roh;N. S. Baek;J. W. Ka;D. L. Joo;J. C. Lee;M. K. Nah;S. M. Ma;J. B. Oh;K. L. Paik;Y. H. Cha;J. H. Jo;H. K. Kim
  2. Erbium-doped Fiber Amplifiers: Principles and Applications E. Desurvire
  3. Appl. Phys. Lett. v.63 no.7 A. Tagaya;Y. Koike;T. Kinoshita;E. Nihei;T. Yamamoto;K. Sasaki
  4. SPIE Proc. v.2289 T. Yamamoto;K. Fujii;S. Teramoto;A. Tagaya;E. Nihei;T. Kinoshita;Y. Koike;K. Sasaki
  5. IEEE Photon. Technol. Lett. v.5 R. T. Chen;M. Lee;S. Natarajan;C. Lin;Z. Z. Ho;D. Robinson
  6. POF'93 P.K. Sharms
  7. Appl. Phys. Lett. v.69 no.2 X. Orignac;D. Barbier;X. M. Du;R. M. Almeoda
  8. SPIE Proc. v.2997 X. Orignac;D. Barbier
  9. J. Opt. Soc. Am. v.14 C. Koeppen;S. Yamada;G. Jiang;A. F. Garito;L. R. Dalton
  10. SPIE Proc. v.2997 M. P. Andrews
  11. Chem. Mater. v.10 M. Kawa;J. M. J. Frechet
  12. Spectroscopy of Solids Containing Rare Earth Ions R. M. Macfarlane;R. M. Shelby;A. A. Kaplyanskii(Ed.);R. M.acfarlane(Ed.)
  13. Spectorscopic Properties of Rare Earths B. G. Wybourne
  14. Spectra and Energy Levels of Rare Earth Ions in Crystals G. H. Dieke
  15. Optical Spectra of Transparent Rare Earth Compounds S. Hufner
  16. Phys. Rev. v.127 B. R. Judd
  17. J. Chem. Phys. v.37 G. S. Ofelt
  18. J. Chem. Phys. v.39 J. D. Axe,Jr.
  19. J. Chem. Phys. v.43 G. E. Barasch;G. H. Dieke
  20. Phys. Rev. Lett. v.19 L. A. Riseberg;H. W. Moos
  21. Phys. Rev. v.174 L. A. Riseberg;H. W. Moos
  22. Appl. Opt. v.2 G. H. Dieke;H. M. Crosswhite
  23. Argonne National Laboratory Report, No. ANL-78-XX-95 W. T. Carnall;H. Crosswhite;H. M. Crosswhite
  24. Physics Today v.46 A. M. Glass
  25. Physics Today v.47 E. Desurvire
  26. Ph. D. Dissertation, FOM Isntitute of Atomic and Molecular Physics(unpublished) M. H. V. Werts
  27. Chem. Phys. Lett. v.276 M. H. V. Werts;J. W. Hofstraat;F. A. J. Guerts;J. W. Verhoeven
  28. J. Am. Chem. Soc. v.117 F. J. Steemers;W. Verboom;D. N. Reinhoudt;E. B. van der Tol;J. W. Verhoeven
  29. Chem. Eur. J. v.4 M. P. Oude Wolbers;F. C. J. M. van Veggel;F. G. A. Peters;E. S. E. van Beelen;J. W. Hofstraat;F. A. J. Guerts;D. N. Reinhoudt
  30. J. Appl. Phys. v.83 L. H. Slooff;A. Polman;M. P. Oude Wolbers;F. C. J. M. van Veggel;D. N. Reinhoudt;J. W. Hofstraat
  31. J. Appl. Phys. v.83 S. I. Klink;G. A. Hebbink;L. Grave;F. C. J. M. van Veggel;D. N. Reinhoudt;L. H. Slooff
  32. J. Phys. Chem. A v.104 S. I. Klink;L. Grave;D. N. Reinhoudt;F. C. J. M. van Veggel;M. H. V. Werts;F. A. J. Guerts;J. W. Hofstraat
  33. Opt. Mater. v.14 L. H. Slooff;A. Polman;S. I. Klink;G. A. Hebbink;L. Hofstraat
  34. Appl. Phys. Lett. v.78 L. H. Slooff;A. Polman;F. Cacialli;R. H. Friend;G. A. Hebbink;F. C. J. M. van Veggel;D. N. Reinhoudt
  35. Appl. Phys. Lett. v.74 W. P. Gillin;R. J. Curry
  36. Appl. Phys. Lett. v.75 R. J. Curry;W. P. Gillin
  37. Syn. Met. v.11 R. J. Curry;W. P. Gilin
  38. Appl. Phys. Lett. v.74 Y. Kawamura;Y. Aada;Y. Hasegawa;M. Iwamuro;T. kitamura;S. Yanagita
  39. Chem. Lett. v.280 Y. Kawamura;Y. Wada;M. Iwamuro;T. Kitamura;S. Yanagita
  40. Appl. Phys. Lett. v.79 B. S. Harrison;T. J. Foley;M. Bouguettaya;J. M. Boncella;J. R. Reynolds;K. S. S. Schanze;J. Shim;P. H. Holloway;G. Padmanaban;S. Ramakrishnan
  41. Angew. Chem. Int. Ed. Engl. v.39 Y. Hasegawa;T. Ohkubo;K. Sogabe;Y. Kawamura;Y. Wada;N. Nakashima;S. Yanagita
  42. Chem. Phys. Chem. v.12 F. Vogtle;M. Gorka;V. Vicinelli;P. Ceroni;M. Maestri;V. Balzani
  43. J. Am. Che. Soc. v.124 V. Vicinelli;P. Ceroni;M. Maestri;V. Balzani;M. Gorka;F. Vogtle
  44. Electron. Lett. v.30 M. Usui;S. Imamura;S. Sugawara;S. Hayashida;H. Sato;M. Hikita;T. Izawa
  45. J. Lightwave Tech. v.16 R. Yoshimura;M. Hikita;S. Tomaru;S. Imamura
  46. Electron Lett. v.27 S. Imamura;R. Yoshimura;I. Izawa
  47. Electron Lett. v.29 T. Tatsuura;S. Ando;S. Sasaki;F. Yamamoto
  48. Marcromolecules v.26 T. Tatsuura;N. Yamada;S. Nishi;Y. Hasuda
  49. Marcromolecules v.25 S. Ando;T. Matsuura;S. Sasaki
  50. Opt. Mater. v.21 C. Pitois;R. Vestberg;M. Rodlert;E. Malmstrom;A. Hult;M. Lindgren
  51. Marcromolecules v.36 S. Destri;W. Porzio;F. Meinardi;R. Tubino;G. Salerno
  52. Photosynthetic Light-Harvesting Systems H. Scheer;S. Schneider
  53. Nature v.374 G. McDermott;S. M. Prince;A. A. Freer;A. M. Z. Hawethornthwaite Lawless;R. J. Cogdell;N. W. Isaacs
  54. Tetrahedron v.50 C.-H. Lee;J. S. Lindsey
  55. J. Org. Chem. v.64 B. J. Littler;Y. Ciringh;J. S. Lindsey
  56. Chem. Mater. v.10 M. Kawa;J. M. J. Frecht
  57. Thin Solid Films v.331 M. Kawa;J. M. J. Frecht
  58. Cryst. Liq. Cryst. v.370 K. L. Paik;H. k. Kim
  59. Mater. Sci. & Eng. C. submitted J. B. Oh;K. L. Paik;J. W. Ka;S. -G. Roh;M. K. Nah;H. K. Kim
  60. Korean Patent Filed H. K. Kim;J. B. Oh;S.-G. Roh;J. W. Ka;N. S. Baek
  61. Nature v.388 D.-L. Jiang;T. Aida
  62. J. Am. Chem. Soc. v.120 D.-L. Jiang;T. Aida
  63. Marcromolecules v.33 M. S. Matos;J. Hofkens;F. C. Verheijen;F. C. De Schryver;S. Hecht;K. W. Pollak;J. M. J. Frechet;B. Forier;W. Dehaen
  64. J. Am. Chem. Soc. v.120 F. Li;S. I. Yang;Y. Ciringh;J. Seth;C. H. Martin;III, D. L.;Singh, D. Kim;R. R. Birge;D. F. Bocian;D. Holten;J. S. Lindsey
  65. Korean Patent Filed H. K. Kim;N. S. Beak;Y. H. Cha;J. Ko
  66. unpublished results N. S. Baek;S. G. Roh;H. K. Kim