• Title/Summary/Keyword: Lumbar spine stabilization

Search Result 57, Processing Time 0.022 seconds

The Effects of Segmental Instability and Muscle Fatigue after Stabilization Exercise Program in Degenerated Disc Disease Patients of Aged (노인 퇴행성디스크 환자의 안정화운동이 척추불안정과 피로도에 미치는 영향)

  • Kim, Hee-Ra
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.4
    • /
    • pp.7-16
    • /
    • 2006
  • The purpose of this study was designed to find out the effectiveness of vertebral segment instability, muscle fatigue response on lumbar spine after apply lumbosacral stabilization exercise program to 4 patients with chronic low back pain and for 12 weeks. In this study, the lumbar spine motion with blind by MedX test machine and the difference of instability to lumbar vertebra segments in flexion, extension test of standing position and spinal load test(Matthiass Test) by Spinal Mouse. The stabilization exercise program was applied 2 times a week for 12 weeks in hospital and 2 times a day for 20 minutes at home. The results of the present study were as follows: 1. Instability test of lumbar vertebra segment is 2 type differential angle test between vertebrae segment and loading test of spine(matthiass) by Spinal Mouse. It appeared to improve stability of segments in sagittal plane after program. So lumbar spine curve increased lordosis toward anterior and was improved of the lumbar spine flexibility in flexion and extension. Specially, in matthiass test, ( - ) value was increased between lumbar vertebra segment when was the load on spine. And so stability improved after program. 2. Fatigue response test(FRT) results, in male, was raised muscle fatigue rate during increase weight, on the other hand female appeared lower than male. As a results, lumbosacral stabilization exercise was aided to improvement of lumbar spine vertebra segments stabilization. Spine instability patients will have a risk when in lifting a load or working with slight flexion posture during the daily of living life and it is probably to increase recurrence rate. Thus, not only lumbar extension muscle strength but also stability of vertebra segments in lumbar spine may be very important.

  • PDF

The Effects of Segmental Instability and Muscle Fatigue after Applying Sabilization Exercise Program In Degenerated Disc Disease Patients of Aged (노인 퇴행성디스크 환자의 안정화운동이 척추불안정과 피로도에 미치는 영향)

  • Kim, Hee-Ra
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.12-20
    • /
    • 2007
  • The purpose of this study was designed to find out the effectiveness of vertebral segment instability, muscle fatigue response on lumbar spine after apply lumbosacral stabilization exercise program to 4 patients with chronic low back pain and for 12 weeks. In this study, the lumbar spine motion with blind by MedX test machine and the difference of instability to lumbar vertebra segments in flexion, extension test of standing position and spinal load test(Matthiass Test) by Spinal Mouse. The stabilization exercise program was applied 2 times a week for 12 weeks in hospital and 2 times a day for 20 minutes at home. The results of the present study were as follows: 1. Instability test of lumbar vertebra segment is 2 type differential angle test between vertebrae segment and loading test of spine(matthiass) by Spinal Mouse. It appeared to improve stability of segments in sagittal plane after applying program. So lumbar spine curve increased lordosis toward anterior and was improved of the lumbar spine flexibility in flexion and extension. Specially, in matthiass test, (-) value was increased between lumbar vertebra segment when was the load on spine. And so applying stability improved after program. 2. Fatigue response test(FRT) results, in male, was raised muscle fatigue rate during increase weight, on the other hand female appeared lower than male. As a results, lumbosacral stabilization exercise was aided to improvement of lumbar spine vertebra segments stabilization. Spine instability patients will have a risk when in lifting a load or working with slight flexion posture during the daily of living life and it is probably to increase recurrence rate. Thus, not only lumbar extension muscle strength but also stability of vertebra segments in lumbar spine may be very important.

  • PDF

The Effects of Lumbar Repositioning Sense and Muscle Fatigue after Stabilization Exercise Program in Disc Disease Patients (허리 디스크탈출증 환자의 재위치 감각과 근 피로도에 미치는 안정화운동 프로그램의 영향)

  • Kim, Myung-Joon
    • Journal of Korean Physical Therapy Science
    • /
    • v.16 no.3
    • /
    • pp.11-17
    • /
    • 2009
  • Background: The purpose of this study was designed to find out the effectiveness of reposition sense, muscle fatigue response on lumbar spine after apply lumbosacral stabilization exercise program to 4 patients with chronic low back pain and for 12 weeks. Method: In this study the reposition sense was measured in 3 angle(60, 30, 12) of the lumbar spine motion with blind by MedX test machine and the difference of instability to lumbar vertebra segments in flexion, extension test of standing position and spinal load test Mattress Test by Spinal Mouse. The stabilization exercise program was applied 2 times a week for 12 weeks in hospital and 2 times a day for 20 minutes at home. Result: The results of the present study were that the repositioning sense was appeared the most error in 12 angles of lumbar flexion and Men was appeared to decrease an error more than female in average value of 4 angles after 12 weeks. And average error of male was decrease more than female. Thus the effects of lumbosacral stabilization exercise was improved repositioning sense of prorioceptor. Fatigue response test(FRT) results, in male, was raised muscle fatigue rate during increase weight, on the other hand female appeared lower than male. Conclusion: As a results, lumbosacral stabilization exercise was aided to improvement of lumbar spine repositioning sense and vertebra segments stabilization. It was showed the rate of decrease in typically 12 degree angle point of each 3 angle(60, 36, 12). Especially, that spine instability patients will have a risk when in lifting a load or working with slight flexion posture around 12 degree during the daily of living life and it is probably to increase recurrence rate. Thus, not only lumbar extension muscle strength but also stability of vertebra segments in lumbar spine may be very important.

  • PDF

The Effects of Lumbar Stabilization Exercise for Spinal Function in Patients with Low Back Pain (요부 안정화운동이 요통환자의 요추부 기능개선에 미치는 영향)

  • Yang, Seung-Hoon
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.1
    • /
    • pp.39-52
    • /
    • 2006
  • The purpose of this study was to investigate the effects of lumbar stabilization exercise therapy on low back pain patients' lumbar spinal function. Identify the effect of stabilization exercise therapy, this study attempted to determine lumbar spinal functions, using spinoscopy, for 20 patients with low back pain This study applied lumbar stabilization exercise to 20 low back pain patients without a control group for 8 weeks and 4 times a week, and examined their spinal functions before and after the application. Data collected from the test were analyzed using Wilcoxon signed ranked test, a nonparametric test. Absolute index, functionality and performance increased significantly compared to them before treatment. FE loads and velocity control while conducting exercise tasks increased significantly compared to them before treatment. Test item ROL and ROM, which indicate the change of angle, both showed significant differences. Of stiff spine, stiff pelvic score and sprain score, which indicate the effects of the conduct of exercise tasks on the movement of the spine, stiff spine score and sprain score showed significant differences. According to the results as presented above, lumbar stabilization exercise may be greatly helpful in improving low back pain patients' lumbar spinal functions.

  • PDF

A effect of education and stabilization exercise of lumbar neutral zone is range of motion and pain of lumbar spine. (요부의 중립위 자세에 대한 교육과 안정화 운동이 요추부의 가동범위와 통증에 미치는 영향)

  • Jung Yeon-Woo;Bae Sung-Soo;Park Youn-Ki
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.346-360
    • /
    • 2003
  • The purpose of this study was to evaluate effects of education and stabilization exercise of lumbar neutral zone is range of motion and pain of lumbar spine on the with non-specific low back pain. And the randomly selected each twenty patients out of the forty non-specific low back pain patients were classified as an stabilization exercise group and the other the patients were in a control group. stabilization exercise group in non-specific low back pain patients participated in exercise program of Richardson & Jull (1995) four week from October 1st, 2002 to February 28st, 2003 in Daegu 00 hospital. The conclusion were as follows: 1. After 4 weeks of therapy, Visual analogue scale in stabilization exercise group and control group with non-specific low back pain patients were not significantly decreased(p>.05). 2. Remodified Schober test in range of motion lumbar spine of stabilization exercise group and control group with non-specific low back pain patients were significantly increased(p<.05). 3. Finger-to-Floor test in range of motion whole spine of stabilization exercise group and control group with non-specific low back pain patients were not significantly increased(p>.05). 4. Visual analogue scale, Remodified Schober test and Finger-to-Floor test in pre and post treatment of stabilization exercise group and control group with non-specific low back pain patients were significant different(p<.05). 5. Visual analogue scale, Remodified Schober test and Finger-to-Floor test in stabilization exercise group and control group with non-specific low back pain patients were not significant different(p>.05).

  • PDF

Lumbo-pelvic stabilization approach for lower back dysfunction (요통의 요골반부 안정화(lumbo-pelvic stabilization) 접근법)

  • Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.4 no.1
    • /
    • pp.7-20
    • /
    • 1998
  • Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. The central nervous system deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipations of reactive forces produced by limb movement. Recent evidence indicates that the lumbar multifidus muscle and transversus abdominis muscle may be involved in controlling spinal stability. Stabilization training in neutral spine is an integrated approach of education in proper posture and body mechanics along with exercise to improve strength, flexibility, muscular and cardiovascular endurance, and coordination of movement.

  • PDF

Comparison of Lumbar Stabilization Exercises and Gluteal Strengthening Exercises on Pain, Disability and Psychosocial Factors in Low Back Pain Patients with Lumbar Instability (요추부 불안정성을 가진 요통환자의 요추부 안정화 운동과 둔근 강화 운동이 통증, 기능장애 및 심리사회수준에 미치는 효과 비교연구)

  • Jeon, Ji-hye;Kim, Suhn-yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.33-44
    • /
    • 2017
  • Background: Lumbar stabilization exercise and gluteal muscle strengthening exercises are widely used to treat for lower back pain patient. The present study aimed to compare the effects of lumbar stabilization exercise and gluteal muscle strengthening exercises on chronic lower back pain with lumbar spine instability, with regard to pain intensity, disability, and psychosocial factors. Methods: Among 53 patients with chronic lower back pain, those with spine instability were selected using 5 examination tests. The selected 28 patients were randomly assigned to lumbar stabilization exercise group (LSE, n=15) and gluteal strengthening exercise group (GSE, n=13). Each group performed the corresponding exercise for 40 minutes, twice a week for 4 weeks. To analyze and compare the effects, pain intensity, the level of low back disability, and psychosocial factors were assessed before and after intervention. Results: There was significant difference in lower back pain intensity between the two groups before and after intervention. The change in low back disability was significant in the GSE group alone following intervention (p<.05), but no other significant difference was found between the groups. Among psychosocial factors, the changes in the fear-avoidance beliefs questionnaire (FABQ)-physical activity and FABQ-total were significant in the LSE group alone following intervention (p<.05). However, no significant difference were found in these factors between the two groups before and after intervention. Conclusions: LSE and GSE for lower back pain with lumbar spine instability showed no significant difference for pain intensity, physical disability, or psychosocial functioning.

  • PDF

Comparison of the Effects of Abdominal Draw-In and Expansion Maneuvers on Trunk Stabilization in Patients With Low Back Pain and Lumbar Spine Instability (요추부 불안정성을 가진 요통환자의 복부 드로우-인 기법과 복부 확장 기법을 이용한 체간안정화운동의 효과 비교)

  • Lee, Ho-Jun;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.22 no.1
    • /
    • pp.37-48
    • /
    • 2015
  • This study aimed to investigate the effect of the abdominal drawing-in maneuver (ADIM) and abdominal expansion maneuver (AEM) on trunk stabilization, as well as trunk muscle activities and differences in quadruple visual analogue scale, Korean Oswestry Disability Index, and Fear Avoidance Beliefs Questionnaire scores, in patients with chronic low back pain and lumbar spine instability. To increase intra-abdominal pressure during the trunk stabilization exercise, the technique of pushing the abdomen out using diaphragmatic abdominal breathing suggested by Pavel Koral was used, which we termed the AEM. Fifty patients who tested positive on more than three of the five lumbar spine instability tests were separated from 138 patients with chronic low back pain of these patients, 16 were placed in the control group (trunk stabilization exercise), 17 were placed in the ADIM group (trunk stabilization exercise with ADIM), and 17 were placed in the AEM group (trunk stabilization exercise with AEM). Each group participated in the study for 30 minutes three times weekly for 4 weeks. Surface electromyography was used to measure the trunk muscle activities during the kneeling forward and supine bridging positions, and one-way repeated analysis of variance was used to determine the statistical significance of the trunk muscle activities in the rectus abdominis, internal oblique (IO), erector spinae, and multifidus (MF) muscles. The ADIM and AEM groups showed relatively larger improvements in psychosocial and functional disability level than control group. There were significant changes among the three groups, those from the measured values of the AEM group was significantly higher than the other two groups in changes in IO and MF trunk muscle activities (p<.05). This finding demonstrates that trunk stabilization exercises with AEM is more effective than ADIM for increasing trunk deep muscle activity of chronic low back pain patients with lumbar spine instability.

Biomechanical Effects of Posterior Dynamic Stabilization System on Lumbar Kinematics: A Finite Element Analysis (Posterior Dynamic Stabilization System의 요추거동에 대한 생체역학적 분석)

  • Ahn, Y.H.;Chen, Wen-Ming;Jung, D.Y.;Park, K.W.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • Many recent studies suggest that the posterior dynamic stabilization(PDS) can be a more physiologically-relevant alternative to the rigid fixation for the patients suffering from low back pain. However, its biomechanical effects or clinically proven efficacies still remain unknown. In this study, we evaluated kinematic behaviors of the lower lumbar spine with the PDS system and then compared to those of the rigid fixation system using finite element (FE) analysis. A validated FE model of intact lumbar spine(L2-L5) was developed. The implanted model was then constructed after modification from the intact to simulate two kinds of pedicle screw systems (PDS and the rigid fixation). Hybrid protocol was used to flex, extend, laterally bend and axially rotate the FE model. Results showed that the PDS systems are more flexible than rigid fixation systems, yet not flexible enough to preserve motion. PDS system allowed $16.2{\sim}42.2%$ more intersegmental rotation than the rigid fixation at the implanted level. One the other hand, at the adjacent level it allowed more range of motion ($2.0%{\sim}8.3%$) than the rigid fixation. The center of rotation of the PDS model remained closer to that of the intact spine. These results suggest that the PDS system could be able to prevent excessive motion at the adjacent levels and restore the spinal kinematics.

NFlex Dynamic Stabilization System : Two-Year Clinical Outcomes of Multi-Center Study

  • Coe, Jeffrey D.;Kitchel, Scott H.;Meisel, Hans Jorg;Wingo, Charles H.;Lee, Soo-Eon;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.6
    • /
    • pp.343-349
    • /
    • 2012
  • Objective : Pedicle-based dynamic stabilization systems, in which semi-rigid rods or cords are used to restrict or control spinal segmental motion, aim to reduce or eliminate the drawbacks associated with rigid fusion. In this study, we analyzed the two-year clinical outcomes of patients treated with the NFlex (Synthes Spine, Inc.), a pedicle-based dynamic stabilization system. Methods : Five sites participated in a retrospective study of 72 consecutive patients who underwent NFlex stabilization. Of these 72 patients, 65 were available for 2-year follow-up. Patients were included based on the presence of degenerative disc disease (29 patients), degenerative spondylolisthesis (16 patients), lumbar stenosis (9 patients), adjacent segment degeneration (6 patients), and degenerative lumbar scoliosis (5 patients). The clinical outcome measures at each assessment were Visual Analogue Scale (VAS) to measure back pain, and Oswestry Disability Index (ODI) to measure functional status. Radiographic assessments included evidence of instrumentation failure or screw loosening. Results : Sixty-five patients (26 men and 39 women) with a mean age of 54.5 years were included. Mean follow-up was 25.6 months. The mean VAS score improved from 8.1 preoperatively to 3.8 postoperatively, representing a 53% improvement, and the ODI score from 44.5 to 21.8, representing a 51% improvement. Improvements in pain and disability scores were statistically significant. Three implant-related complications were observed. Conclusion : Posterior pedicle-based dynamic stabilization using the NFlex system seems effective in improving pain and functional scores, with sustained clinical improvement after two years. With appropriate patient selection, it may be considered an effective alternative to rigid fusion.