• Title/Summary/Keyword: Lug strength check

Search Result 2, Processing Time 0.017 seconds

Development of the Design System for the Lifting Lug Structure (탑재용 러그 구조의 설계 시스템 개발)

  • 함주혁
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.189-194
    • /
    • 2000
  • Due to the rapid growth of ship building industry and increment of ship construction in Korea, several hundred thousand of lifting lugs per year, have been installed at the lifting positions of ship block and removed after finishing their function, therefore, appropriate design system for strength check or optimal design of each lug structure has been required in order to increase the capability of efficient design. In this study, design system of D-type lifting lug structure which is most popular and useful in shipyards, was developed for the purpose of initial design of lug structure. Developed system layout and graphic user interface for this design system based on the C++ language were explained step by step. Using this design system, more efficient performance of lug structural design will be expected on the windows of personal computer.

  • PDF

Development of the Design System for the Lifting Lug Structure (탑재용 러그 구조의 설계 시스템 개발)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.86-98
    • /
    • 2001
  • Due to the rapid growth of ship building industry and the increment of ship construction in Korea, several hundred thousand of lifting lugs per year, have been installed at the lifting positions of ship block and removed after finishing their function, therefore. appropriate design system for the strength check or the optimal design of each lug structure has been required in order to increase the capability of efficient design. In this study, the design system of D-type lifting lug structure which is most popular and useful in shipyards, was developed for the purpose of initial design of lug structure. Developed system layout and graphic user interface for this design system based on the $C^{++}$ language were explained step by step. Through the illustration of one example of D-type lug designs, the efficiency of this design system was proved. Therefore, more efficient performance of practical lug structural design will be expected on the windows of personal computer using this design system.

  • PDF