• 제목/요약/키워드: Luciferase reporter

검색결과 315건 처리시간 0.026초

지방세포에서 microRNA-145에 의한 Cathepsin D의 발현 제어 (Repression of Cathepsin D Expression in Adipocytes by MicroRNA-145)

  • 김현지;배인선;서강석;김상훈
    • 생명과학회지
    • /
    • 제24권7호
    • /
    • pp.798-803
    • /
    • 2014
  • Cathepsin D (CtsD)는 아스파르트산 단백질 분해효소로서 cytochrome C의 방출을 유도하여 apoptosis 기전을 활성화시킨다. 본 연구에서는 3T3-L1 지방전구세포에서 CtsD 발현 조절에 관여하는 microRNA에 대해 조사하였다. 먼저 지방전구세포 사멸시 CtsD 발현 변화를 관찰하기 위하여 DNA damage agent인 doxorubicin을 3T3-L1 세포주에 노출시켜 CtsD 발현이 증가함을 확인하였다. 또한 지방전구세포주에서 CtsD가 과발현되면 세포 생존율이 감소하였다. miRanda program을 이용하여 CtsD 유전자를 표적으로 하는 microRNA를 탐색하여 miR-145를 선발하였다. Luciferase reporter assay에 의해 miR-145가 CtsD 유전자의 3' UTR 부위에 결합하여 luciferase 활성을 감소시킴을 관찰하였다. 3T3-L1 세포주에 miR-145 mimic을 도입한 결과 CtsD mRNA 발현과 단백질 수준이 감소하였다. 또한 세포주에 doxorubicin을 처리한 결과 CtsD 유전자 발현 증가와 상반되게 miR-145 발현이 감소하였다. 이외에도 miR-145 inhibitor을 세포에 도입하면 세포 생존율이 감소하였다. 이러한 결과는 지방전구세포의 세포사멸에 CtsD가 관여할 수 있으며, miR-145에 의해 CtsD 발현이 직접 조절되고 있음을 나타낸다. 따라서, 지방전구세포의 사멸을 유도하기 위해서는 miR-145 발현 제어가 주요한 표적이 될 수 있을 것으로 생각된다. 본 연구결과는 향후 비만 예방 및 치료를 위한 지방세포 사멸기전 규명에 중요한 기초 자료를 제공할 수 있을 것으로 기대한다.

Inhibition of the Induction of Nitric Oxide Synthase by Kobusin

  • Kim, Sang-Kyum;Pokharel, Yuba-Raj;Kim, Ok;Woo, Eun-Rhan;Kang, Keon-Wook
    • Toxicological Research
    • /
    • 제23권2호
    • /
    • pp.123-126
    • /
    • 2007
  • We isolated a lignan, kobusin from Geranium thunbergii and studied its effect on the expression of inducible nitric oxide synthase (iNOS) gene in a monocyte/macrophage cell line, RAW264.7 cells. Kobusin inhibited lipopolysaccharide (LPS)-stimulated NO production and the expression of iNOS in a concentration-dependent manner. To identify the mechanistic basis for its inhibition of iNOS induction, we examined the effect of kobusin on both the luciferase reporter activity using $NF-{\kappa}B$ minimal promoter and the nuclear translocation of p65. Kobusin suppressed the reporter gene activity and the LPS-induced movement of p65 in to nucleus. $NF-{\kappa}B$ activation is controlled by the phosphorylation and subsequent degradation of $I-{\kappa}B{\alpha}$, and in the present study, we found that $I-{\kappa}B{\alpha}$ phosphorylation was also inhibited by kobusin. Our findings indicate that kobusin may provide a developmental basis for an agent against inflammatory diseases.

Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells

  • Park, Eun-Jung;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • 제14권5호
    • /
    • pp.453-462
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG), an oriental herbal medicine, has been known to improve liver function, and has both anti-inflammatory and antimicrobial properties. However, little is known about the immune-enhancing effects of PG and its mechanism. In this study, we aimed to investigate whether fermented PG extract (FPGE), which has increased platycodin D content, activates the immune response in a murine macrophage cell line, RAW 264.7. MATERIALS/METHODS: Cell viability was determined by Cell Counting Kit-8 assay and the nitric oxide (NO) levels were measured using Griess reagent. Cytokine messenger RNA levels of were monitored by quantitative reverse transcription polymerase chain reaction. To investigate the molecular mechanisms underlying immunomodulatory actions of FPGE in RAW 264.7 cells, we have conducted luciferase reporter gene assay and western blotting. RESULTS: We found that FPGE treatment induced macrophage cell proliferation in a dose-dependent manner. FPGE also modulated the expression of NO and pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The activation and phosphorylation levels of nuclear factor kappa B (NF-κB) were increased by FPGE treatment. Moreover, 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of AMP-activated kinase (AMPK), significantly reduced both lipopolysaccharides- and FPGE-induced NF-κB reporter gene activity. CONCLUSIONS: Taken together, our findings suggest that FPGE may be a novel immune-enhancing agent acting via AMPK-NF-κB signaling pathway.

Molecular Cloning of Estrogen Receptor $\alpha$ in the Masu Salmon, Oncorhynchus masou

  • Sohn, Young Chang
    • 한국양식학회지
    • /
    • 제17권1호
    • /
    • pp.62-68
    • /
    • 2004
  • A cDNA encoding the masu salmon, Oncorhynchus masou, estrogen receptor $\alpha$ (msER$\alpha$) was cloned from the pituitary gland by polymerase chain reaction (PCR). This cDNA contains an open reading frame encoding 513 amino acid residues, and the calculated molecular weight of this protein is about 56,430 Dalton. The amino acid sequences of the DNA binding and ligand binding domains of msER$\alpha$ showed high homology to those of other fish species (84-100%). Reverse transcription PCR analysis showed that the mRNA level of msER$\alpha$ in the pituitary was slightly higher in estradiol-17$\beta$(E2) injected masu salmon than that of control fish. To test the biological activity of msER$\alpha$, the cDNA was ligated to a mammalian expression vector and transfected into a gonadotrope-derived cell line, L$\beta$T2, with a reporter plasmid including estrogen responsive element. Expression of the reporter protein, luciferase, was E2 and msER$\alpha$-dependent. The masu salmon ER$\alpha$ is structurally conserved among teleost species and functions as a transcriptional activator in the pituitary cells.

Isolation of an actin promoter for strong expression of transgenes in the orchid genus Dendrobium

  • Koo, Ja Choon
    • Journal of Plant Biotechnology
    • /
    • 제40권1호
    • /
    • pp.27-36
    • /
    • 2013
  • We isolated and functionally characterized a Dendrobium Actin1 (DmACT1) promoter that drives strong gene expression in the orchid genus Dendrobium. A genomic fragment containing the region 3227 bp upstream of the coding region of DmACT1 was obtained by inverse PCR. Detailed comparison of the full-length cDNA and genomic sequences revealed that DmACT1 has a 1374 bp first intron in the 5' UTR. However, the 5' flanking sequences upstream of the coding region showed no obvious sequence similarities compared to those of known promoters, including plant actin promoters. Serial deletion constructs of the 5' flanking region from the translation initiation codon were fused to the coding sequence of a GUS/luciferase fusion reporter to identify the regulatory elements necessary for promoter activity. Transient assays in the flowers of Dendrobium revealed that the 5' UTR-intron greatly enhanced promoter activity. Moreover, the DmACT1 promoter with its 5' UTR-intron yielded approximately 10-fold higher reporter activity than the rice Act1 promoter-intron. Our data suggest that the DmACT1 promoter with its 5' UTR-intron is a useful tool for strong expression of transgenes in Dendrobium orchids.

A mutational anlaysis of the N-terminal protease of bovine viral diarrhea virus

  • Chon, Seung-ki
    • 대한수의학회지
    • /
    • 제39권4호
    • /
    • pp.772-777
    • /
    • 1999
  • The uncaped genomic RNA of bovine viral diarrhea virus (BVDV) initiates translation by recruitment of eukaryotic translation initiation factors at the internal ribosome entry site (IRES). N-terminal protease ($N^{pro}$) is the first translation product of the open reading frame (ORF). By using the vaccinia virus SP6 RNA polymerase transient expression system, we showed previously that deletion of $N^{pro}$ region reduced translation by 21%. To better understand the biological significance of $N^{pro}$ for translation, we carried out a mutational analysis of the $N^{pro}$ region of BVDV cloned in the intercistronic region of a bicistronic reporter plasmid. We constructed a bicistronic expression vector in which the entire 5 UTR and the mutated $N^{pro}$ region (${\Delta}386-901$, ${\Delta}415-901$ and ${\Delta}657-901$) was cloned between two reporter genes, chloramphenicol acetyltransferase (CAT) and luciferase (LUC). In vivo translation analyses showed that $N^{pro}$ region was dispensible for efficient translation. The results indicate that the $N^{pro}$ region is not essential for BVDV RNA translation and the 3' boundary of BVDV IRES is expanded into $N^{pro}$ region, suggesting that $N^{pro}$ may not play a major role in BVDV replication.

  • PDF

Hemocyte-specific Promoter for the Development of Transgenic Silkworm, Bombyx mori

  • Park, Seung-Won;Goo, Tae-Won;Kim, Seong-Ryul;Choi, Gwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제25권1호
    • /
    • pp.111-114
    • /
    • 2012
  • In previous studies we have shown that a sw17255 gene was expressed in hemocyte-specific tissues of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). It was verified that the sw17255 core promoter region contains elements that regulate the expression of this gene in hemocyte tissue; the selected promoter region spans nucleotides -1 to -2,112 upstream of the start codon. Each of the luciferase reporter gene expression vectors under the control of 4 different kinds of promoter candidates, (-2,112/-1), (-1,640/-1), (-1,169/-1) and (-579/-1), and the control reporter plasmid DNA, were introduced into B. mori larval coelom by direct injection using a syringe. The promoter candidate [E] (-579/-1) showed more than 1.67 fold transcriptional activity compared to control promoter activity. Higher productivity of an expressed gene in the transgenic silkworm by this promoter combination could be achieved in the near future. The foreign recombinant protein could be easily harvested from the blood of the transgenic silkworm.

Siah Ubiquitin Ligases Modulate Nodal Signaling during Zebrafish Embryonic Development

  • Kang, Nami;Won, Minho;Rhee, Myungchull;Ro, Hyunju
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.389-398
    • /
    • 2014
  • Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between siah and Drosophila Siah homologue (sina) suggests their important physiological roles during embryonic development. However, detailed functional studies of Siah in vertebrate development have not been carried out. Here we report that Siah2 specifically augments nodal related gene expression in marginal blastomeres at late blastula through early gastrula stages of zebrafish embryos. Siah2 dependent Nodal signaling augmentation is confirmed by cell-based reporter gene assays using 293T cells and 3TP-luciferase reporter plasmid. We also established a molecular hierarchy of Siah as a upstream regulator of FoxH1/Fast1 transcriptional factor in Nodal signaling. Elevated expression of nodal related genes by overexpression of Siah2 was enough to override the inhibitory effects of atv and lft2 on the Nodal signaling. In particular, E3 ubiquitin ligase activity of Siah2 is critical to limit the duration and/or magnitude of Nodal signaling. Additionally, since the embryos injected with Siah morpholinos mimicked the atv overexpression phenotype at least in part, our data support a model in which Siah is involved in mesendoderm patterning via modulating Nodal signaling.

Effects of various metal ions on the gene expression of iron exporter ferroportin-l in J774 macrophages

  • Park, Bo-Yeon;Chung, Ja-Yong
    • Nutrition Research and Practice
    • /
    • 제2권4호
    • /
    • pp.317-321
    • /
    • 2008
  • Macrophages play a key role in iron metabolism by recycling iron through erythrophagocytosis. Ferroportin-l (FPN1) is a transporter protein that is known to mediate iron export from macrophages. Since divalent metals often interact with iron metabolism, we examined if divalent metals could regulate the expression of FPN1 in macrophages. J774 macrophage cells were treated with copper, manganese, zinc, or cobalt at 10, 50, or $100\;{\mu}M$ for 16 to 24 h. Then, FPN1 mRNA and protein levels were determined by quantitative real-time PCR and Western blot analyses, respectively. In addition, effects of divalent metals on FPN1 promoter activity were examined by luciferase reporter assays. Results showed that copper significantly increased FPN1 mRNA levels in a dose-dependent manner. The copper-induced expression of FPN1 mRNA was associated with a corresponding increase in FPN1 protein levels. Also, copper directly stimulated the activity of FPN1 promoter-driven reporter construct. In contrast, manganese and zinc had no effect on the FPN1 gene expression in J774 cells. Interestingly, cobalt treatment in J774 cells decreased FPN1 protein levels without affecting FPN1 mRNA levels. In conclusion, our study results demonstrate that divalent metals differentially regulate FPN1 expression in macrophages and indicate a potential interaction of divalent metals with the FPN1-mediated iron export in macrophages.

Assessment of the Estrogenicity of Isoflavonoids, Using MCF-7-ERE-Luc Cells

  • Joung, Ki-Eun;Kim, Yeo-Woon;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • 제26권9호
    • /
    • pp.756-762
    • /
    • 2003
  • In the current study, our research focused on the estrogenic activity of isoflavonoids, mainly genistein, biochanin A and daidzein. Genistein enhanced the reporter gene expression of MCF-7-ERE-Luc cells, at a concentration as low as 10 nM, with a concentration of 100 nM the achieved gene expression effects were similar to those of 10 pM 17$\beta$-estradiol. Based on the estrogenic activities of biochanin A and daidzein, hydroxyl groups at the 4 and 5 positions are needed for the maximal effect of the genistein. The estrogenic effects of these isoflavonoids were inhibited by the concomitant treatment with tamoxifen. The data showed that the estrogenic effects of isoflavonoids were mediated through estrogen receptors. When the isoflavonoids were tested as mixtures, the estrogenic effects were lower than the arithmetic sum of those induced by each individual isoflavonoid. The estrogenic potency of each isoflavonoid was presented at EC50 levels with a 17$\beta$-estradiol equivalent concentration (EEQ) based on the dose response of each chemical. The EC50s and EEQs of genistein, biochanin A and daidzein were 4.15, 0.89 and 0.18 $\mu$M, and 15.0, 5.12 and 1.83 $\mu$ M/M, respectively. Our data clearly demonstrated that the pERE-luciferase reporter gene assay was suited for the sensitive and quantitative measurement, and large scale screening, of the estrogenicity of chemicals in vitro.