• Title/Summary/Keyword: Lubrication Viscosity

Search Result 152, Processing Time 0.025 seconds

An Experimental Study on Frictional Characteristics of the Piston Ring (피스톤 링 마찰 특성의 실험적 연구)

  • Lee, Jae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.115-122
    • /
    • 1999
  • A friction tester to measure friction force generated at the interface between the piston ring and the cylinder liner was developed. Modified piston ring is bar-shaped and 100mm long. Surface of the modified piston ring is machined by the profile grinding machine to be formed as a shape of an arc of a circle. Measured data are treated as mean effective friction force and power loss. From this test it can be confirmed that friction force is deeply affected by surface shape of the piston ring and viscosity of supplied oil. Friction force is deeply affected by surface shape of the piston ring and viscosity of supplied oil. Friction force is decreased and power loss is increased with increasing velocity. And it is known that region of mixed lubrication is broader than estimated with theoretical analysis. it is expected that this tester can be used as the optimization tool of the surface shape of the piston ring at the first stage of development of the piston rings.

  • PDF

PERFORMANCE NEEDS OF TOMORROW'S DRIVELINE LUBRICANTS

  • Hong, Hyun-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.21-24
    • /
    • 2002
  • There is a trend with driveline lubricants toward improved thermal stability, vehicle component durability and fuel efficiency. These improvements can significantly reduce vehicle operating costs and improve customer satisfaction. Of these improvements, the fuel efficiency is getting a substantial attention due to recent focus on $CO_2$ emission control in Europe, Japan and $CAF{\'{E}}$ requirement in U.S.A. Lower viscosity axle oils and transmission fluids are currently being evaluated as potential solutions since these lubricants tend to reduce the churning losses and can improve the fuel efficiency. However, these lubricants should provide adequate gear and bearing protection, while increasing the overall efficiency of the driveline components. In this paper, the development of new fuel efficient axle was discussed with the focus on the effect of base oils, additives, and viscosity modifiers on the fuel efficiency of driveline components.

  • PDF

Automotive Engine Oil and Vehicle Fuel Economy (자동차 엔진오일과 연비)

  • 이영재;김강출;표영덕
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.155-161
    • /
    • 2000
  • To improve the vehicle fuel economy, various technologies such as improvement of power train efficiency, use of light weight material, improvement of aerodynamic design, have been studied. One of the possible way to improve the vehicle fuel economy is to reduce the engine friction loss by improving the engine oil characteristics. In the present paper, it was examined the effect of the engine oil viscosity and the addition of friction modifier to engine oil on vehicle fuel economy improvements. Moreover, the effect of engine oil degradation on vehicle fuel economy was examined with two gasoline vehicles and one diesel vehicle by using the fuel economy test facility.

  • PDF

EFFECT OF LOAD ANGLE ON THE OPERATION OF TILTING 12-PADS proceeding BEARING

  • Strzelecki, S.;Someya, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.113-114
    • /
    • 2002
  • Radial, tilting 12-pad proceeding bearings are applied as the radial bearings of vertical rotors of water turbines. The mean loads are stable at the peripheral speeds of proceeding reaching 50 m/s. The operation of tilting 12-pads proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions have been obtained by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss, oil flow, maximum oil film pressure, maximum temperature have been computed for different load angle of bearing.

  • PDF

Analysis of Cylindrical Hydrostatic Bearing (진원형 정수압 베어링의 해석)

  • 문호지;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1989.11a
    • /
    • pp.94-99
    • /
    • 1989
  • This paper analyzes file stiffness, damping coefficient, friction force and flow coefficient of externally pressurized oil journal beating, including the effect of journal rotation according to the Sommerfeld number. This paper assumed that the oil in the whole pocket has constant pressure, and that the oil in the whole bearing region has constant viscosity, temperature and density. Reynolds equation is derived from Nuvier - Stokes equation and continuity equation. And solved bearing pressure by ADI method for whole bearing region and fitted with out flow rate of pocket region. The model for numerical simulation is hydro - static oil journal bearing for high-speed, high-accuracy lathe spindle.

  • PDF

An Experimental Study of the Friction and Temperature Characteristics of Engine Crankshaft Bearings (엔진 크랭크새프트 베어링의 마찰 및 온도 특성에 대한 실험적 연구)

  • 조명래;문호지;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.44-49
    • /
    • 1995
  • Friction characteristic of an engine crankshaft bearing is affected by revolution speed, applied loads, and viscosity of lubrication. So, experimental investigation is required to observe the friction characteristics using these factors. Hydraulic cylinder, servo controller system which can be modified the applied load, and test rig for the observation of the characteristics of engine crankshaft bearings were designed and fabricated, and some experiments were performed. Friction torque, journal locus and circumferential temperature variation of crankshaft bearing were measured according to applied load, revolution speed, and oil inlet temperature.

WORLD WIDE BASE STOCK TRENDS

  • Henderson, H.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.55-62
    • /
    • 2002
  • Significant changes in the performance requirements of finished lubricants is having a pronounced impact on the quality and manufacturing approach for base stocks, the building block for these products. Separation processing is no longer capable of producing high yields of premium base stocks and is rapidly being replaced with hydroprocessing. Isoparaffins are the most desirable component because of their high Viscosity Index, low pour point and excellent stability. This paper will discuss industry trends and the drive towards higher quality base stocks. Manufacturing options are discussed and examples presented to demonstrate the performance of these premium base stocks.

  • PDF

Optimal Design of the Crank Press Main Journal Bearings (크랭크 프레스 주축 저널 베어링의 최적 설계)

  • 심현해;김창호;권오관
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.69-75
    • /
    • 1989
  • The mobility method of dynamically loaded journal bearings was applied to optimize the lubrication of the main journal bearing of the crank press. The effects of oil viscosity, temperature bearing clearance, length, the existence of the circumferential groove, peak press force, and crank rpm were examined. From the results of the minimum film thickness and the maximum film pressure, some of the factors could be optimized, and the degrees of the beneficial and detrimental effects of the others could be estimated.

Gasoline engine black sludge - occurrence, causes & testing

  • Lewis, Eric-J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.11a
    • /
    • pp.1-27
    • /
    • 1987
  • 1. Gasoline engine sludge is a major worldwide problem 2. U.S. and European sludge have similarities 3. Stop-go driving and longer oil drains make the problem worse 4. Fuel is a major influencing factor 5. Increased use of cracked components may be cause 6. Sludge can be peproduced in controlled field tests 7. Daimler benz M102E and ford PV-2 (VE) tests have been developed to overcome problem by higher oil quality 8. The M102E and PV-2 respond in a similar way to increased dispersancy 9. High dispersant ocp viscosity modifiers appear to have unique adbantage in both tests

  • PDF

Optimal Design of Clearance in Fuel Injection Pump (연료분사펌프의 최적 간극 설계)

  • Hong, Sung-Ho;Lee, Bora;Cho, Yongjoo;Park, Jong Kuk
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.148-156
    • /
    • 2015
  • In the study, a design process for ensuring optimal clearance in a fuel injection pump(FIP) is suggested. Structure analysis and hydrodynamic lubrication analysis are performed to determine the optimal clearance. The FIP is simulated using Hypermesh, Abaqus 6.12 to evaluate the reduction of clearance when the maximum supply pressure is applied. The reduction in clearance is caused by the difference in the deformations between the barrel and plunger. When the deformation of the plunger is larger than that of the barrel, a reduction in clearance at the head part occurs. On the other hand, the maximum clearance reduction equals the maximum deformation in the stem part, because the deformation of barrel does not occur in this region. The clearance of FIP should be designed to be larger than maximum reduction of clearance in order to avoid contact between the plunger and barrel. In addition, the two-dimensional Reynolds equation is used to evaluate lubrication characteristics with variations of viscosity, clearance and nozzle for a laminar, incompressible, unsteady state flow. The equation is discretized using the finite difference method. The lubrication characteristics of FIP are investigated by comparing film parameter, which is the ratio of the minimum film thickness and surface roughness. The optimal clearance of FIP is to be designed by considering the maximum reduction in clearance, lubrication characteristics, machining limits and tolerance of clearance.