• Title/Summary/Keyword: Lubrication Pump

Search Result 119, Processing Time 0.023 seconds

Infinitesimal Fluid Injection Control System by using an Orifice and a Directional Control Valve (오리피스와 방향제어밸브를 이용한 미세유량 분사제어시스템)

  • Jeong, Eun-Seok;Oh, In-Ho;Lee, Ill-Yeong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • This study suggests a precision flow control system that enables fluid injection of a few grams at a time in a few ms time duration. The fluid injection system suggested here consists of a high pressure fluid pump, a 3 way 3 position directional control valve, an injector and an orifice. The orifice is located between the directional control valve and the injector. By supplying current signal to the directional control valve, the prescribed small amount of fluid can be supplied to a plant through the injector. The control robustness of the suggested system against the disturbances like the pressure change in a plant and the viscosity variation of the injected fluid is secured easily by using an orifice with very small inside diameter and setting the supply pressure with comparatively high value. The control performances of the suggested system are verified by numerical simulations and experiments. The outcomes of this research could be applied to the common rail injection control of lubrication oil for large size marine diesel engines, and other industrial plants.

  • PDF

Development of a New Process for Welding a WC Layer to the Round Surface of a Plain Carbon Steel (초경접합 신공법 개발)

  • 박우진;김기열;이범주;조정환;박채규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.257-262
    • /
    • 1999
  • The economic loss arisen from the abrasion wear have been increasing at every industrial field. To reduce the economic loss we developed a new process, which is named MAHa process(Metallic Adhesives for HArdening). MAHa process is a process to weld tungsten carbide(WC) to the surface of a plain carbon steel so that it may stay longer under the severe abrasive environment. The depth of the WC layer ranges from 0.5 mm to 5 m. Compared with the conventional technology, arc-augmented welding which bonds WC on the flat surface only, MAHa process has the merits that it can make a robust WC layer on the round or wave- shaped surface also. How to turn the WC powder into a flexible mat is the key technology of the MAHa process. We invented new polymer materials to accomplish such a goal and both the MAHa process and the invented materials were applied for patents. For the application, the inner wall of elbow of Concrete Pump Truck(CPT) was maharized(MAHa process-treated) and the new WC layer on the inner wall was made successfully. The elbow was equipped to a CPT.

  • PDF

Fluid Film Characteristics between Cylinder Block and Valve Plates in Oil Hydraulic Piston Pumps (유압 피스톤 펌프의 실린더 블록과 밸브 플레이트 사이의 유막 특성)

  • Jung J.Y.;Song K.K.;Oh S.H.;Kim J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.8-14
    • /
    • 2004
  • Abstract: In the oil hydraulic piston pumps the clearance between the valve plate and cylinder block plays an important role for volumetric and overall efficiency. Thus, adequate lubricational fluid film is needed for the interface. In this study, fluid film thickness is measured by a gap sensor and a slip ring under operational conditions to observe the behavior of the lubrication mechanism in detail. To investigate the effect according to the valve plate types in view of the fluid film, three different types were designed. Leakage flow rate and shaft torque were also measured to clarify the effect according to the valve plate types. A broad range of experiments were conducted to provide reasonable data on the effect of fluid film. In this experiments two main parameters were found, of which the one is the discharge pressure and the other is valve plate geometry. As a result, we found that the spherical valve plate could get more stable fluid film thickness, maintain good efficiency for high pressure range than the other types.

  • PDF

Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant (엔진 냉각수 폐열 회수용 스크롤 팽창기 설계)

  • Yu, Je-Seung;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

Lubricating Characteristics of Diesel Fuel (경유의 윤활특성)

  • 신성철;강익중
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.332-340
    • /
    • 2000
  • The reduction of sulfur content in the diesel fuel has caused the poor lubricity of diesel fuel in the distributor type injection pumps of diesel engines that use the diesel for lubrication of their moving parts. To investigate the reason for poor lubricity of low sulfur diesel fuels, the wear scar diameters by HFRR (High Frequency Reciprocating Rig) were measured on the diesel fuels from Korean markets and the results were compared with their physical and chemical properties. Also, the lubricity change and the improvement effects on lubricity additives for the ultra low sulfur diesel fuel, were made experimentally, that will be regulated to a maximum of 0.005 wt% from about 2005 were evaluated. As a result, a good correlation was found between the wear scar diameter and the polyaromatic compound which includes heterocyclic compound in the diesel fuel. It was also found that the content of polyaromatic compound including heterocyclic compound was affected by the amount of desulfurization treatment fraction. And the lubricity additives with ester base were more effective than that with acid base on the ultra low sulfur diesel fuel. Therefore, it is suggested that the factors affecting the lubricity stated above should be taken into account to improve the lubricity property of the diesel fuel in the refining process.

An investigation into the thermo-elasto-hydrodynamic effect of notched mechanical seals

  • Meng, Xiangkai;Qiu, Yujie;Ma, Yi;Peng, Xudong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2173-2187
    • /
    • 2022
  • A 3D thermo-elasto-hydrodynamic model is developed to analyze the sealing performance of a notched mechanical seal applied in the reactor coolant pump. In the model, the generalized Reynolds equation, the energy equation coupled with notch heat balance equation, the heat conduction equations, and the deformation equations of the sealing rings are iteratively solved by the finite element method. The film pressure and temperature distribution are obtained, and the deformation of the sealing rings is revealed to study the mechanism of the notched mechanical seals. A parameterized study is conducted to analyze the sealing performance under different operating conditions. As a comparison, the sealing performance of non-notched seals is also studied. The results show that the hydrostatic effect is dominant in the load-carrying capacity of the fluid film due to the radial mechanical and thermal deformations. The notch can cool the fluid film and influence the thermal deformation of seal rings. The sealing performance is sensitive to the pressure difference, ambient temperature, and rotational speed. It is suggested to set the notches on the softer sealing rings to acquire the greater hydrodynamic effect. Compared with the non-notched, the notched end face holds a better lubrication performance, especially under lower rotational speed.

Abnormal High-Temperature Behavior Troubleshooting of Process Compressor Tilting Pad Journal Bearing (프로세스 압축기 틸팅패드 저널베어링의 비정상 고온거동 트러블슈팅)

  • Lee, An Sung;Lee, Woonsil;Choi, Dong-Hoon
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.37-44
    • /
    • 2017
  • A DE-side LBP tilting pad journal bearing of a 1-stage overhung heat-pump compressor in a propylene process exhibited abnormal high-temperature behavior. Its temperature had been relatively high at $78^{\circ}C$ from the beginning of operation. In 2014, after three years of operation, it increased suddenly and reached $103^{\circ}C$. Installing a varnish removal equipment and others managed to stabilize the temperature at $95^{\circ}C$. We undertook a troubleshooting approach for reviewing the comprehensive status and integrity of the temperature design of the bearing. We performed lubrication and heat-balance analysis, based on the design engineering data and documents supplied by the OEM. For the base design data of DE-side TPJB, evaluating the effects of key design variables on bearing metal temperature showed that firstly, increasing the bearing clearance and supply oil flow-rate, and next, changing the oil type, and finally, increasing the machined pad clearance and offset, are more effective in reducing the bearing metal temperature. Furthermore, a clarification meeting with the OEM revealed that an incorrect decision had been made to decrease the bearing clearance to eliminate the SSV harshness issue, while not maintaining a sufficient oil flow-rate. We conducted a detailed retrofit design analysis, wherein we increased the oil flow-rate and bearing clearance by decreasing the preload. We predicted that the bearing temperature would decrease to $63^{\circ}C$ from $75.7^{\circ}C$ even at the rerate condition. Finally, after installing and operating a retrofit replacement bearing in 2015, the bearing temperature stabilized at a low temperature of $65^{\circ}C$. Currently (January. 2017), two year later, the bearing metal temperature remains at $65^{\circ}C$. Therefore, we can conclude that the abnormal high-temperature behavior of the bearing has been resolved completely.

Performance Improvement of the Hydrostatic Piston Shoe Bearing of an EHA-Piston Pump under Boundary Friction Conditions (EHA 펌프용 피스톤 슈 정압베어링의 경계 마찰 성능 개선)

  • Hong, Y.S.;Kwon, Y.C.;Kim, C.H.;Lee, S.L.;Kim, B.K.;Moon, J.S.;Kim, J.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.30-35
    • /
    • 2014
  • The pumps of electro-hydrostatic actuators operate most frequently in boundary lubrication speed range, as they compensate for the position control errors as a control element. When conventional swash plate type piston pumps are applied to electro-hydrostatic actuators, the frictional power losses as well as the wear rate of sliding components, such as piston shoes can increase drastically under the boundary friction condition. In this paper, the power losses of the piston shoes were investigated which were engendered by a frictional solid-to-solid contact and leakage flow rate of their hydrostatic bearing. In order to reduce them, DLC-coating was applied to the swash plate and the ball joint of pistons along with its effects were demonstrated. In addition, it was also shown that the wear rate of the piston shoes could be markedly reduced using the DLC-coated swash plate.

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.