• Title/Summary/Keyword: Lubricant viscosity

Search Result 111, Processing Time 0.026 seconds

Evaluation of Friction Characteristics for High-Strength-Steel Sheets Depending on Conditions (마찰조건에 따른 고강도 강판의 마찰특성 평가)

  • Kim, J. E.;Heo, J. Y.;Yoon, I. C.;Song, J. S.;Youn, K. T.;Park, C. D.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.381-386
    • /
    • 2015
  • Recently, high-strength-steel sheets have been used extensively for increasing fuel-efficiency and stability in automobiles. A study on the characteristics regarding friction factors is required because high-strength-steel sheets have higher contact pressure at the tool interface as compared to low-strength steel sheets. For the current study, a sheet friction test was used to examine the influence of several factors on friction. The friction tests were performed on two types of sheet steels (SPFC590 and SPFC980) to obtain friction coefficients as a function of contact pressure, surface roughness, lubricant viscosity, and speed. Based on the experimental results for SPFC590 and SPFC980, the friction coefficient decreased with increasing contact pressure, but the friction coefficient increased with increasing surface roughness. Also, the friction coefficient decreased with increasing lubricant viscosity and decreasing speed.

The Effect on the Friction Forces of Big-End Bearing by the Aerated Lubricant

  • Park, Young-Hwan;Jang, Si-Youl
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.425-426
    • /
    • 2002
  • Lineal and angular movements of many engine components make the lubricant absorb air and the aerated lubricant greatly influences the clearance performance of contacting behaviors of engine components such as big-end bearing, cam and tappet, etc. This study investigates the behaviors of aerated lubricant in the gap between con-rod bearing and proceeding which is one of the most frictional energy consuming components in the engine. Our assumption for the analysis of aerated lubricant film is that the film formation is influenced by the two major factors. One is the density characteristics of the lubricant due to the volume change of lubricant by absorbing the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble in the lubricant. In our investigation, it is found that these two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Frictional forces are also influenced by the aerated bubble size and density, which eventually enlarge the shear resistance due the surface tension, Modified Reynolds' equation is developed for the computation of fluid film pressure with the effects of aeration ratio under the dynamic loading condition. From the calculated load capacity by solving modified Reynolds' equation, proceeding locus is computed with Mobility method at each time step.

  • PDF

A Study on Clearance Behaviors with Micro Scaled Lubricant Aeration under the Dynamically-Loaded Condition (동하중 조건에서 마이크로 크기의 공기 혼입 윤활유의 틈새 거동 연구)

  • Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.26-32
    • /
    • 2006
  • This work analyzes the behaviors of aerated lubricant in the gap between con-rod bearing and journal. Aerated lubricant influences two major factors on the film formation. One is the density characteristics of the lubricant due to the volume change by the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble. Those two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Modified Reynolds' equation is developed with the consideration of aerated ratio in the lubricant and journal locus is computed with the Mobility method after the computation of two dimensional pressure distributions over the bearing area.

A Study on the Locus of Dynamically-Loaded Journal Bearing with Aerated Lubricant (윤활유의 공기 혼입에 따른 동하중 조건에서의 저널 궤적에 관한 연구)

  • 박영환;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.220-228
    • /
    • 2001
  • Journal locus with aerated lubricant is analyzed under the dynamic loading condition. In this analysis, we have found that aerated lubricant influences two major factors on the film formation. One is the density variation of the lubricant due to the volume change by the bubbles and the other is the viscosity changes of the lubricant due to the surface tension of the bubble. Those two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Modified Reynolds'equation is developed with the consideration of aerated ratio in the lubricant and journal locus is computed with Mobility method with the computation of two dimensional pressure distribution over the bearing area.

  • PDF

A Study on the Estimation of Blank Holder Force in Square Cup Drawing (정사각용기의 성형시 블랭크 홀더력에 관한 연구)

  • 김진무;송영배
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.356-361
    • /
    • 2000
  • In this study, when a square cup is under drawing, blank holder pressure necessary for flange wrinkling prevention was experimentally studied. The materials used in the experiment were SPCC steel and SUS304 and the drawing ratio was 1.62∼2.0. Two cases for lubricantion condition were investigated. One was without lubricant and the other was with lubricant of high viscosity.

  • PDF

Study on the Friction Characteristics of Advanced High Strength Steel Sheet (초고강도강판의 마찰특성에 관한 연구)

  • Kim, N.J.;Kim, S.H.;Jung, K.R.;Park, S.B.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.250-253
    • /
    • 2009
  • In this study, the friction test was performed to find friction characteristics of advanced high strength steel (AHSS) sheets and the multiple regression method was employed to obtain friction models. The friction coefficients associated with the lubricant viscosity, drawing speed, and blank holding pressure are measured. Differently from GA steel sheets, the effects of the lubricant viscosity and pulling speed are a little, which are explained by a theory of adhesion and wear as well as a deformation of friction surface. In addition, the effects of friction parameters are numerically represented by friction regression models.

  • PDF

Development of a Simulation Program to Predict the Performance of the Multi-grade Lubricant before Blending Base Oil with Additives (기유와 첨가제 혼합 전 다등급 윤활유의 성능 예측 시뮬레이션 프로그램 개발)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • Generally, to product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive package liquid and a polymer liquid as viscosity index improver in order to improve the lubricating property of base oil. That is, engine oil is the mixture of more than two fluids. Specially, a polymeric type liquid cannot be seen as the linear viscosity like Newtonian fluids. In this research, by using the governing equation describing non-Newtonian hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics, it will be compared the bearing performance between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed hydrodynamic journal bearing. Further, it is to be found the way estimating the performance of the blended multi-grade engine lubricant in a journal bearing in advance before blending by using the physical properties of mineral base oil, fundamental additive liquid and polymer liquid of viscosity index improver. So, it can be reduced the number of trial and error to get the wanted lubricant by selecting the proper volume fraction of each liquid to satisfy the expected performance and estimating in advance the performance of various multi-grade oils before blending. Therefore, it can be shorten the developing time and saved the developing cost.

Possibility of Obtaining Lubricant Base Oil from Talakan Crude Oil Suitable for Exploitation in Extremely Cold Conditions in the Republic of Sakha (Yakutia)

  • Zhirkov, N.P.;Zakharova, S.S.;Sung, Zoo-One
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • This paper addresses the problems of using anti-freeze lubricants for different machines that must function at extremely low temperatures during winter operation in the Republic of Sakha (Yakutia). We discuss the possibility of obtaining anti-freeze base oils from Talakan crude oil, an area with major oil and gas deposits of the Republic of Sakha, and also provide the trade and technological classification of Talakan crude oil. We propose two different schemes for processing Talakan crude oil: the fuel scheme (obtaining light and heavy fractions as a fuel oil) and the base oil scheme (obtaining light fractions and base oils). We investigate the influence of pour point depressants on alkyl-methacrylate base on the low-temperature properties of the fractions obtained from Talakan crude oil and Korean base oils, and establish the optimal concentration of pour point depressants. We compare the properties of these fractions with the low-temperature properties of Korean base oils and find that the commercial oil "Ravenol 0W-40" provides optimistic results. We obtain oil with a pour point of minus $50^{\circ}C$ and a viscosity index greater than 100. The Design of Experiment was used to establish the optimum composition of the pour point depressants and the base oil S-8 to obtain lubricant oil with a kinematic viscosity of 17 cSt, viscosity index of 208, and a pour point of minus $64^{\circ}C$.

Effect of Lubricants on the Physical Properties of Poly(butylene terephthalnte) (폴리(부틸렌 테레프탈레이트)의 물성에 대한 윤활제의 효과)

  • Kim, Hoy-Gap;Kim, Jun-Kung;Lim, Soon-Ho;Lee, Kun-Wong;Park, Min;Kang, Ho-Jang
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.239-244
    • /
    • 2004
  • Effect of lubricants on the rheological and thermal properties of poly(butylene terephthalate) [PBT] were investigated. Calcium stearate and adipic acid glycol polyester (AhGP) were used as processing lubricants for PBT. Decrease of melt viscosity was accomplished by the addition of 1 wt% of lubricants. It was understood that melt viscosity was affected by the enhancement of chain mobility of PBT with AhGP as an internal lubricant as well as the lubricity on processing equipment developed by calcium stearate as an external lubricant. Lubricants also influenced chain scission of PBT which caused the viscosity drop as well. In addition, lubricant is resulted in the lowering of thermal stability, however, this might be minimized by adding less than 3 wt% of calcium stearate as a lubricant. As a consequence, calcium stearate as an external lubricant is more effective to control the melt viscosity of PBT with minimizing of chain scission and thermal instability in PBT.

Single-molecule Alkylation of Isoparaffin Using Peroxide Initiator for Making Synthetic Lubricant (합성 윤활유 제조를 위한 퍼옥사이드계 개시제를 이용한 이소파라핀의 단독 알킬레이션)

  • Khadka, Roshan;Lee, Sang-Woo;Kim, Yong-Woon;Ryu, Jae-Wook;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.496-501
    • /
    • 2014
  • Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in terms of physical and chemical characteristics such as low pour point (PP), and high viscosity index (VI). This paper first reports a novel preparation route for a synthetic lubricant via alkylation of isoparaffins using a peroxide initiator without olefin. Alkylation of three kinds of isoparaffins such as i-$C_{16}$, i-$C_{18}$, and i-$C_{23}$ as well as alkylation of i-$C_{18}$ with 2-pentene using di-tert butyl peroxide initiator were conducted under various conditions to confirm alkylation reaction from isoparaffins themselves i.e; Single-molecule alkylation. Various properties of each alkylates (VI and PP) were investigated as a synthetic lubricant. Single-molecule alkylation made from i-$C_{16}$ a,nd i-$C_{18}$ showed ultra high VI (>140) and low PP (< $-30^{\circ}C$).