• Title/Summary/Keyword: Lubricant effect

Search Result 226, Processing Time 0.018 seconds

A Study on Wear Properties of Solid lubricating Greaphite Materials (고체윤활 Graphite 소재의 마모 특성에 관한 연구)

  • Yang, Hoyoung;Kim, Jaehoon;Kim, Yeonwook;Ha, Jaeseok;Park, Sunghan;Lee, Hwankyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.95-100
    • /
    • 2013
  • The important design factors for designing solid lubricating of dynamic seal are tightness, wear resistance and lubricant films. In this study, the effect factors influenced solid lubricating properties of the graphite were analyzed and wear behaviour caused for various test conditions was compared with results obtained from reciprocating wear tests. Also the optimal conditions for formation of lubricant films were investigate to evaluate wear properties of graphite materials. The repeated procedure for the formation of wear particles and lubricant films, and the dissipation of lubricant films was estimated the wear mechanisms with changes of wear depth. Therefore the lubricant film of graphite seal was generated by adhesion of wear particles on the worn surface and it was very useful in wear characteristics.

Effects of Lubricant on Fretting Corrosion of Tin-Coated Electric Contacts (주석 도금한 전기 접촉부의 미동마멸 부식에 대한 윤활유의 영향)

  • Kim, Kwang-Su;Oh, Man-Jin;Han, Dong-Woon;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.88-94
    • /
    • 2016
  • We conduct a series of fretting corrosion tests on tin-coated electric contact to evaluate the effects of lubricant on fretting corrosion behavior. We perform these tests with a constant contact force at 25℃ 50℃, 75°C, and 100℃. In the tests with a span amplitude of 30 μm, we could not determine the conventional behavior of the first, second, and third stages of the change in electric resistance during fretting corrosion and observed that the contact resistance continuously increases with the cycles. This behavior is due to the fact that the generation of oxides on the tin-coated contact is controlled and stabilized by the presence of lubricant. SEM observations on samples with a span amplitude of 77 μm at all testing temperatures confirm that there is less oxide debris on the fretting damaged surface. Hence, for tin-coated electric connector, the effect of lubrication on the lifetime of the electric contact increases as the fretting span decreases and testing temperature increases, compared to those for connector without lubricant. Especially, for a specimen with a span amplitude of 30 μm at 100℃, the increment in contact lifetime due to lubricant is found to be more than 20 times, compared to that without lubricant.

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

Superhydrophobic Nano Patterning Techniques for Enhanced Performance of Naval Underwater Vessels (군용 수중 운동물체의 성능강화를 위한 초소수성 나노 패터닝 기술)

  • Hong, Soon-Kook;Lee, Ki-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.114-120
    • /
    • 2013
  • A superhydrophobic surface means that the contact angle between the solid surface and a water droplet is more than $150^{\circ}$. Materials with a superhydrophobic surface have a self-cleaning function because of the Lotus effect, in which water is not absorbed by the material but rolls off of it. If such a Lotus effect can be applied to the surface of underwater vessels, submarines, torpedos, and so on, enhanced vessels can be made based on this lubricant effect reducing the friction coefficient for the liquid. Because polymer composites can be easily applied in various nanotechniques, they are more advantageous than conventional materials like iron in terms of a superhydrophobic surface. Furthermore, a superhydrophobic surface bring enhanced anticorrosion and ecotechnology because no paint is needed on underwater vessels.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

Development of Dielectric Constant Sensor for Measurementof Lubricant Properties (윤활유 물성 측정을 위한 유전상수 센서 개발)

  • Hong, Sung-Ho;Kang, Moon-Sik
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.203-207
    • /
    • 2021
  • This study presents the development of dielectric constant sensors to measure lubricant properties. The lubricant oil sensor is used to measure oil properties and machine conditions. Various condition monitoring methods are applied to diagnose machine conditions. Machine condition monitoring using oil sensors has advantage over other machine condition monitoring methods. The fault conditions can be noticed at the early stages by the detection of wear particles using oil sensors. Therefore, it provides an early warning in the failure procedure. A variety of oil sensors are applied to check the machine condition. Among all oil sensors, only one sensor can measure the tendency of several properties such as acidity and water content. A dielectric constant sensor is also used to measure various oil properties; therefore, it is very useful. The dielectric constant is the ratio of the capacitance of a capacitor using that material as a dielectric to that of a similar capacitor using vacuum as its dielectric. The dielectric constant has an effect on water content, contaminants, base oil, additive, and so forth. In this study, the dielectric constant sensor is fabricated using MEMS process. In the fabrication process, the shape, gap of the electrode array, and thickness of the insulation material are considered to improve the sensitivity of the sensor.

Development of an Integrated Oil Purification System (통합형 오일 정제 시스템의 개발)

  • Hong, Sung-Ho;Lee, Kyung-Hee;Jeong, Nam-Wha
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.121-127
    • /
    • 2022
  • This study presents the development of an integrated oil purification system consisting of moisture removal, oil flushing, and oil filtering devices. In this system, the oil flushing device is combined with a micro-bubble generator. Oil purification is necessary for ensuring the high performance of the lubricant through the efficient removal of contaminants and thus enables good maintenance of mechanical systems. The developed purification system removes moisture, varnish, and solid particles. Moreover, during oil purification, the oil flushing device separates foreign materials and contaminants remaining in the lubricating oil piping or mechanical systems. The microbubble generator, which is combined with the oil flushing device, can separate harmful contaminants, such as sludge, wear particles, and rust, from piping or lubrication systems through the cavitation effect. Moisture is removed using a double high-vacuum chamber, while sludge and varnish are removed via electro-absorption using a high-voltage generator. Additionally, the total maintenance cost of the system is reduced through the use of domestically fabricated cartridge filters composed of glass fiber and cellulose. The heater, which maintains the temperature of the lubricant at 60℃, can process 41,000 L of lubricant simultaneously. Multiple tests confirmed that the proposed integrated purification system exhibits good performance in oil flushing and removal of water and varnish.

Study on the Fluid Film Thickness and Pressure of Elliptical Elastohydrodynamic Lubrication with Spin Effect for the Power Transmitting Contact in the Continuously Variable Transmission (무단 변속기의 동력전달 접촉에서 회전운동을 고려한 타원형상의 점접촉 탄성유체윤활연구)

  • Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.272-277
    • /
    • 2005
  • Continuously variable transmission (CVT) of toroidal type has a elliptical shape of contact zone under the elastohydrodynamic lubrication (EHL) condition, where the power is transmitted only by shearing the lubricant. Due to the small contact area of elliptical shape, the traction of the shear behaviors of lubricant over the contact zone is under extremely high contact pressure over 1.0GPa. During the power transmission by shearing the fluid, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spin. Among the movements, the spin effect that is the most undesirable contact behavior in transmitting the power frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of EHL with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

Partial-EHL Analysis of Wheel Bearing for a Vehicle (자동차용 휠 베어링의 부분탄성유체윤활 해석)

  • Kim Dong-Won;Lee Sang-Don;Cho Yong-Joo
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.289-295
    • /
    • 2005
  • Most machine element, such as gears and bearings, are operated in the mixed lubrication region. Contact between two asperities has an effect on machine life by increasing local pressure. To estimate fatigue life exactly, asperity contact should be considered as a factor of fatigue life because this happening produce friction, abrasion and make flash temperature. In this paper, asperity contact is considered as a result of film breakdown when lubricant pressure is not enough to separate two asperities. Contact pressure is calculated to asperity overlap region and added to lubricant pressure. For this model, numerical procedure is introduced and the result on surface roughness and velocity for wheel bearing is presented. Results of EHL analysis for wheel bearing show that asperity contact is occurred at the edge ofEHL conjunction where has a insufficient lubricant pressure to separate two surface.