• 제목/요약/키워드: Lubricant Thickness

검색결과 100건 처리시간 0.02초

마그네슘합금 판재의 온간 디프 드로잉성에 관한 연구 (A Study on the Warm Deep Drawability of Mg- Alloy Sheet Metal)

  • 이용길;김종호;이종섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.117-120
    • /
    • 2003
  • Warm deep drawing which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical cup drawing of Mg-alloy sheet metal. In experiments the temperature of die and blank holder is varied from room temperature to $300^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch corner area. Test material chosen for experiments is AZ31 magnesium sheet metal. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio as well as thickness distributions of drawn cups are investigated and validity of warm deep drawing process is also discussed.

  • PDF

미끄럼운동을 하는 면에 윤활 조건에 따라 발생하는 보호막의 형성과 파괴에 관한 연구

  • 이영재
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1990년도 제12회 학술강연회초록집
    • /
    • pp.16-35
    • /
    • 1990
  • The mechanism of failure of lubricated surfaces at high sliding speeds was Investigated. Experiments were performed with the ball-on-flat and cylinder-on-flat geometries, using lubricants of four different chemical reactivities. Surface failure was found to not be predictable using the ratlo, $\lambda$, of fluid film thickness to composite surface roughness except when chemically inert lubricants are used. Even then the influence of temperature rise on fluid film thickness does not adequately explain the low load carrying capacity of lubricants at high sliding speeds. which causes surface failure. The protective layers on sliding surfaces that form by chemical reaction with the lubricant were found to reduce the surface roughentrig and Increase the load carrying capacity of surfaces to values of $\lambda$ as low as 0.03. Neither the surface toughening nor the formation of the protective layers have been incorporated Into failure models for lubricated systems.

  • PDF

미끄럼운동을 하는 면에 윤활 조건에 따라 발생하는 보호막의 형성과 파괴에 관한 연구 (A Study on the Formation and the Loss of the Protective Layer the Sliding Surface According to the Lubricating Conditions)

  • 이영제
    • Tribology and Lubricants
    • /
    • 제7권1호
    • /
    • pp.16-27
    • /
    • 1991
  • The mechanism of failure of lubricated surfaces at high sliding speeds was investigated. Experiments were performed with the ball-on-flat and cylinder-on-flat geometries, using lubricants of four different chemical reactivities. Surface failure was found to not be predictable using the ratio, $\lambda$, of fluid film thickness to composite surface roughness except when chemically inert lubricants are used. Even then the influence of temperature rise on fluid film thickness does not adequately explain the low load carrying capacity of lubricants at high sliding speeds, which causes surface failure. The protective layers on sliding surfaces that form by chemical reaction with the lubricant were found to reduce the surface roughening and increase the load carrying capacity of surfaces to values of $\lambda$ as low as 0.03. Neither the surface roughening nor the formation of the protective layers have been incorporated into failure models for lubricated systems.

A Study on the Measurement for the Nano Scale Film Formation of Ultra Low Aspect Ratio

  • Jang Siyoul;Kong Hyunsang
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.283-288
    • /
    • 2004
  • The measurement of ultra low aspect ratio fluid film thickness is very crucial technique both for the verification of lubrication media characteristics and for the clearance design in many precision components such as MEMS, precision bearings and other slideways. Many technologies are applied to the measurement of ultra low aspect ratio fluid film thickness (i.e. elastohydrodynamic lubrication film thickness). In particular, in-situ optical interferometric method has many advantages in making the actual contact behaviors realized with the experimental apparatus. This measurement method also does the monitoring of the surface defects and fractures happening during the contact behavior, which are delicately influenced by the surface conditions such as load, velocity, lubricant media as well as surface roughness. Careful selection of incident lights greatly enhances the fringe resolutions up to $\~1.0$ nanometer scale with digital image processing technology. In this work, it is found that coaxial aligning trichromatic incident light filtering system developed by the author can provide much finer resolution of ultra low aspect ratio fluid film thickness than monochromatic or dichromatic incident lights, because it has much more spectrums of color components to be discriminated according the variations of film thickness. For the measured interferometric images of ultra low aspect ratio fluid film thickness it is shown how the film thickness is finely digitalized and measured in nanometer scale with digital image processing technology and space layer method. The developed measurement system can make it possible to visualize the contact deformations and possible fractures of contacting surface under the repeated loading condition.

  • PDF

자동차용 마찰재에 사용되는 흑연과 마그네시아에 따른 전이막과 마찰특성에 관한 연구 (The Effects of Graphite and Magnesium Oxide in Automotive Friction Materials on Friction and Formation of Transfer Film)

  • 배은갑;윤장혁;장호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.226-234
    • /
    • 2002
  • A systematic study of the role of transfer films on friction properties was performed with various temperatures in the brake system. An NAO friction material specimens containing 9 ingredients were tested using a pad-on-disk type friction tester A new method of measuring the transfer film thickness was developed by considering the electrical resistance of the transfer film using a 4-point probe technique. The properties of transfer film such as surface morphology and film distribution vaied according to the relative amount of graphite and magnesium oxide. By using SEM, it was possible to obtain information about the chemical composition of the transfer film. Results showed that there detected a threshold value of the relative amount of a two active materials to maintain a certiain thickness of a transfer film. Results also showed that formation of friction layer generated on the friction surface was strongly affected by chemical action of two ingredients during sliding due to chemical reaction of solid lubricants at different interface temperature. The results suggested that no apparent relationship between transfer film thickness and the average friction coefficient was founded and friction characteristics were affected more by the property of the solid lubricant and abrasive in the material.

  • PDF

DLC 표면 처리에 따른 임플랜트 지대주 나사의 풀림 현상에 관한 연구 (THE STUDY ON THE REMOVAL TORQUE OF THE DIAMOND LIKE CARBON COATED TITANIUM ABUTMENT SCREWS)

  • 곽재영;허성주;장익태;임순호;이종엽;이광렬
    • 대한치과보철학회지
    • /
    • 제41권2호
    • /
    • pp.128-135
    • /
    • 2003
  • Statement of problem : Implant screw loosening remains a problem in implant prosthodontics. Some abutment screws with treated surfaces were introduced to prevent screw loosening and to increase preload. DLC(Diamond Like Carbon) film has similar properties on hardness, wear resistance, chemical stability, biocompatibility as real diamond materials. Purpose : The purpose of this study was to investigate the effect of lubricant layer on abutment screw and to discriminate more effective method between soft lubricant and hard lubricant to prevent screw loosening. Material and method : In this study, $1{\mu}m$ thickness DLC was used as protective, lubricating layer of titanium screws and 3 times removal torque was measured on the abutment screws to investigate the difference in 10 coated and 10 non-coated abutment screws. Results : The results indicated that the implants with DLC coating group were not more resistant to the applied force in screw loosening. At 32Ncm, the 3 times removal torque in DLC group were $27.75{\pm}2.89,\;25.85{\pm}2.35$ and $26.2{\pm}2.57$. The removal torque in no-coated abutment screws were $27.85{\pm}4.23,\;27.35{\pm}2.81$ and $27.9{\pm}2.31$, respectively. Conclusion : The lubricant layer used in this study was Diamond Like Carbon(DLC) and it have a properties of hard and stable layer. The DLC coating layer was hard enough to prevent distortion of screws in the repeated unscrewing procedure in clinical situation. The reduced friction coefficient in hard DLC layer was not effective to prevent screw loosening.

이속압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화 (Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Differential Speed Rolling)

  • 이성희
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.295-300
    • /
    • 2018
  • Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni-0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at $200-900^{\circ}C$. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of $800^{\circ}C$. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at $500-700^{\circ}C$ is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at $400^{\circ}C$. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.

무전해 도금 코팅 공정을 이용한 은 박막의 두께 변화에 따른 트라이볼로지 특성 (Tribological Characteristics of Silver Electroless-Plating Process According to Thicknesses Variation)

  • 이현대;김대은
    • 대한기계학회논문집A
    • /
    • 제37권2호
    • /
    • pp.219-225
    • /
    • 2013
  • 본 연구에서는 무전해 도금 코팅방법을 이용하여 생성한 Ag 박막의 기계적 특성을 고찰하였다. 이 코팅방법은 화학적 반응을 통해 금속박막을 기판 위에 형성할 수 있는 공정으로써 비교적 간단하고 경제적이며 전기도금과 비교했을 때 도체뿐만 아니라 부도체에도 적용할 수 있다는 유리한 장점이 있다. 따라서 반도체에서부터 기계부품에 이르기까지 산업전반에 걸쳐 다양하게 적용되고 있는 코팅방법이다. 본 연구에서는 무전해 도금 공정의 변수에 따라 형성되는 Ag 박막의 기계적 특성을 파악하는데 중점을 두었다. 특히, 무전해 도금방법을 이용해 제작한 코팅 시편에 대해 도금시간에 따른 거칠기 및 두께에 대한 분석을 실시하였으며 AFM, SEM, Tribotester 와 같은 장비를 이용하여 트라이볼로지적 특성을 규명하였다.

볼 베어링용 고무시일의 접촉력 해석에 관한 연구 (A Study on the Contact Force of Rubber Seals for Ball Bearings)

  • 김청균;전인기;최인혁
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2261-2267
    • /
    • 1992
  • 본 연구에서는 시일 립의 간섭량과 접촉력에 관련된 이론적 연구를 수행한다. 시일의 접촉면에서 축방향 접촉력이 크게 설계되면 시일 립 선단에서는 마찰과 마멸이 심하게 진행되어 시일수명을 크게 단출시킬 우려가 있고, 접촉력이 작으면 밀봉된 유 체의 누설유려가 증가되면서 볼과 레이스사이의 윤활상태를 나쁘게 하여 베어링 수명 을 크게 단축하는 결과를 초래하게 되므로 시일 립의 접촉력에 관련된 연구는 대단히 중요하다.

Head-Disk Interface : Migration from Contact-Start-Stop to Load/Unload

  • Suk, Mike
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.643-651
    • /
    • 1999
  • A brief description of the current technology (contact-start-stop) employed in most of today's hard disk drive is presented. The dynamics and head/disk interactions during a start/stop process are very complicated and no one has been able to accurately model the interactions. Thus, the head/disk interface that meets the start/stop durability and stiction requirements are always developed statistically. In arriving at a solution. many sets of statistical tests are run by varying several parameters. such as, the carbon overcoat thickness. lubricant thickness. disk surface roughness, etc. Consequently, the cost associated III developing an interface could be significant since the outcome is difficult to predict. An alternative method known as Load/Unload technology alters the problem set. such that. the start/stop performance can be designed in a predictable manner. Although this techno¬logy offers superior performance and significantly reduces statistical testing time, it also has some potential problems. However. contrary to the CSS technology. most of the problems can be solved by design and not by trial and error. One critical problem is that of head/disk contacts during the loading and unloading processes. These contact can cause disk and slider damage because the contacts are likely to occur at high disk speeds resulting in large friction forces. Use of glass substrate disks also may present problems if not managed correctly. Due to the low thermal conductivity of glass substrates. any head/disk contacts may result in erasure due to frictional heating of the head/disk interface. In spite of these and other potential problems. the advantage with L/UL system is that these events can be understood. analyzed. and solved in a deterministic manner.

  • PDF