• Title/Summary/Keyword: Ls-dyna

Search Result 438, Processing Time 0.024 seconds

Numerical evaluation of FRP composite retrofitted reinforced concrete wall subjected to blast load

  • Nam, Jin-Won;Yoon, In-Seok;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.215-225
    • /
    • 2016
  • High performance materials such as Fiber Reinforced Plastic (FRP) are often used for retrofitting structures against blast loads due to its ductility and strength. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads. In this study, the blast resistance of Carbon Fiber Reinforced Plastic (CFRP) and Kevlar/Glass hybrid fabric (K/G) retrofitted reinforced concrete (RC) wall is analyzed by using the explicit analysis code LS-DYNA, which accommodates the high-strain rate dependent material models. Also, the retrofit effectiveness of FRP fabrics is evaluated by comparing the analysis results for non-retrofitted and retrofitted walls. The verification of the analysis is performed through comparisons with the previous experimental results.

A study of model to improve the accuracy of Springback prediction on sheet metal forming (판재 성형품의 탄성회복예측 정밀도 향상을 위한 모델 연구)

  • Kim M. C.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.47-52
    • /
    • 2004
  • Springback comes from the release of residual stress after forming. The control of phenomenon is especially important in the sheet metal forming since there are no other practical methods available to correct the dimensional inaccuracy from springback. Therefore the accurate predication before the die machining has been a long goal in the Held of sheet metal forming. The aim of the present study is to enhance the prediction capability of finite element(FE) analysis for the springback phenomenon. For this purpose FE analysis for V-bending has been carried out with the commercial programs, LS-DYNA. The FE analysis results have been validated through the comparison of experimental. The experimental results measured directly by the strain gauge have given the confidence to FEA.

  • PDF

Drop/Impact Simulation and Experimental Verification of Mobile Phone (휴대용 단말기의 낙하충격해석 및 실험적 검증)

  • Kim, Jin-Gon;Lee, Jun-Yeong;Lee, Sin-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.695-702
    • /
    • 2001
  • In this paper, the drop/impact simulation for a mobile phone has been carried out with the explicit code LS-DYNA and its validation has been experimentally verified. The small size of this kind of electronics products makes it time-consuming, and difficult to conduct drop tests to detect the failure mechanism and identify their drop behaviors. Strict drop/impact performance criteria of such hand held electronic products as mobile phones play an important role in their design because these products must withstand both normal and unexpected shock. Usually, the product durability on drop impact depends on designers experience. The present reliable methodology of drop/impact simulation provides an efficient and powerful vehicle to improve the design quality and reduce the design period.

A Study on The Crash Analysis of Guard Rail (방호울타리의 충돌해석에 관한 연구)

  • Min, Han-Ki;Jung, Jong-An;Kim, Taeg;Gook, Jin-Seon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.598-604
    • /
    • 2011
  • In guard rail crashes, the development of guard rail structure to ensure the maintenance of safety for passengers is very important. So, this paper focuses on understanding the possibility of efficient structural development considering crash strength of guard rail through computer simulation using the commercial code, LS-DYNA3D at the initial stage of guard rail development. For this study, guard rail structure was modeled using shell elements to represent major structural members and passenger car was modeled using plate elements of simple shape to do not have the drawing, and impact boundary conditions required by regulation was applied. In order to confirm the validity of the computational results, they were compared with the test results.

A study of diamond wire rock cutting process analysis by FEM

  • Kabir, Mohammed Ruhul;Sagong, Myung;Ahn, Sung-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.615-621
    • /
    • 2015
  • In this paper diamond wire cutting method has been proposed to cut the rock in the tunnel face. Diamond wire saw method could cut the rock from tunnel face with very minor vibration and noise. In this study rock cutting process has been simulated with FEM method by using LS-DYNA explicit non-linear finite element code. Normal load act as an prime factor when cutting the rock surface. For observing the effect of normal load on bead, several experiments has been conducted by varying normal loads on the bead. From each experiment, cutting rate has been calculated to compare the cutting rate with different load conditions. By increasing the normal load on bead, cutting rate increases drastically.

Development of HDD Vibration/Shock Simulation Tool for Design Engineers (설계자 전용 HDD 진동/충격해석 프로그램 개발)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.46-51
    • /
    • 2009
  • Recently, the shock resistance and dynamic characteristics of hard disk drives have become more important due to their highly increased storage density and miniaturization. In this study, we have developed an ANSYS/Mechanical/LS-DYNA based HDD vibration/shock simulation tool for design engineers. This simulation tool using ANSYS APDL can produce a parametric finite element modeling of HDD automatically and has GUI-based applications using the script program language Tcl/Tk. In the present tool, we adopt the reliable methodology of vibration/shock simulation, which is experimentally verified. It is expected that this simulation tool can make the repetitive computational efforts for the shock-proof design of HDD drastically reduced.

  • PDF

Dynamic Shock Simulation of Head-gimbal Assembly in Micro MO Drives (초소형 광자기 드라이브용 HGA의 동적 충격 시뮬레이션)

  • 오우석;홍어진;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.189-194
    • /
    • 2004
  • As a disk drive becomes widely used in portable environments, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes In contact with outer shock disturbance, the system gets critical damage in head-gimbal assembly or disk. This paper describes analysis of a HGA(head-gimbal assembly) in micro MO drives to shock loading during both non-operating state and operating state. A finite element model which consists of the disk, suspension, slider and air bearing was used to find structural response of micro MO drives. In the operational case. the air bearing is approximated with four linear elastic springs. The commercially available finite element solver, ANSYS/LS-DYNA, is used to simulate the shock response of the HGA in micro MO drives. In this paper, the mechanical robustness of the suspension is simuiated considering the shock responses of the HGA.

  • PDF

Design for Improving Impact Resistance of Microwave Oven Using Drop/Impact Analysis (낙하/충격해석을 통한 전자렌지의 내충격설계)

  • Kim, J.G.;Kim, J.Y.;Kim, H.S
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.53-58
    • /
    • 2009
  • The importance of cost reduction has grown bigger to ensure the competetive power of products in the electric home appliances industry. Thus, it is necessary to assess the reliability due to drop-impact happenning in process of distribution of microwave ovens with the panel and cavity of thinner thickness for cost reduction. In the present study, the drop/impact simulation using the explicit code LS-DYNA3D has been carried out for improving the impact resistance of a microwave oven. This CAE-based design approach can be successfully applied to enhance the deteriorated dynamic behavior under the impact conditions of dropping height 70cm according to ISTA procedure 2A.

  • PDF

Structural Safety Assessment of Offshore Structure under Explosion Loadings (해양구조물의 폭발하중에 의한 구조 안전성 평가 기법 연구)

  • Lee, Sang-Gab;Cho, Heon-Il;Hong, Anh;Kim, Jin-Kyung;Kim, Gyu-Sung;Lee, Kun-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.203-208
    • /
    • 2011
  • 본 논문에서는 해양시추 생산설비의 상부구조(topside structure)에 설치된 공정설비(process module)에서 가스 누출에 의한 가스폭발 하중에 대한 해양구조물의 비선형 동적 거동응답 특성파악을 파악하기 위하여 LS-DYNA 코드의 유체-구조 연성(Fluid-Strycture Interaction) 해석기법을 적용하여 폭발 압력파를 보다 정확하게 구현하기 위한 기법을 개발하고자 한다.

  • PDF

Local Zooming Analysis of LNGC CCS under Sloshing Impact Loading (LNG선 단열시스템의 슬로싱 충격하중에서의 국부확대해석)

  • Lee, Sang-Gab;Hong, Anh;Cho, Heon-Il;Kim, Jin-Kyung;Ahn, Ji-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.544-551
    • /
    • 2011
  • As the cargo tank size and configuration of Liquefied Natural Gas carriers(LNGC) grows in response to the global increase in demands for LNG and the necessities of its economical transportation, impact loading from sloshing may become one of the most important factors in the structural safety of LNG Cargo Containment Systems(CCS). The objective of this study is to demonstrate the procedure of the structural safety assessment of MARK III membrane type CCS under sloshing impact loading using local zooming analysis technique of LS-DYNA code.

  • PDF