Customer retention has been a pressing issue for companies to get and maintain the loyal customers in the competing environment. Lots of researchers make effort to seek the characteristics of the churning customers and the loyal customers using the data mining techniques such as decision tree. However, such existing researches don't consider relationships among customers. Social network analysis has been used to search relationships among social entities such as genetics network, traffic network, organization network and so on. In this study, a customer network is proposed to investigate the differences of network characteristics of churning customers and loyal customers. The customer networks are constructed by analyzing the real purchase data collected from a Korean cosmetic provider. We investigated whether the churning customers and the loyal customers have different degree centralities and densities of the customer networks. In addition, we compared products purchased by the churning customers and those by the loyal customers. Our data analysis results indicate that degree centrality and density of the churning customer network are higher than those of the loyal customer network, and the various products are purchased by churning customers rather than by the loyal customers. We expect that the suggested social network analysis is used to as a complementary analysis methodology with existing statistical analysis and data mining analysis.
Purpose - Customer satisfaction has been considered important as a way to retain current customers. Specifically, the retention of current customers through customer satisfaction has been considered important in an industry where competition between companies is fierce. Major Korean airlines have confronted fierce competition with the growth of low cost carriers (LCCs). In order to survive, these airlines need to retain their customers. This research aims to investigate the relationships between customer satisfaction and the customer intention to remain loyal. Moreover, this study examines how the influence of customer satisfaction on customer loyalty is moderated by gender. Research design, data, and methodology - A regression model is developed in which customer satisfaction, gender, and an interaction of satisfaction and gender are predictors and the customer's intention to remain loyal is a dependent variable. To analyze this research model, data were collected from 402 university students taking a marketing class in universities in Seoul, Chung-Cheong province, and Kangwon province. After eliminating data from students who had never flown and data with missing values, a final sample of 201 was analyzed. The hypotheses were tested using SPSS 21.0. Internal reliability was supported by the results of Cronbach's α. Multiple regression was performed. Results - Empirical results showed that customer satisfaction toward the airline's service had a positive influence on the customer intention to remain loyal to the airlines. Moreover, this influence was moderated by gender. More specifically, a male customer's intention to remain loyal was more determined by his satisfaction toward airline service than a female customer's. Conclusions - This research contributes to the aviation service marketing literature by showing how customer satisfaction influences customer intention to remain loyal and how this influence is moderated by gender. More specifically, male customer loyalty is more determined by airline service satisfaction than female customers. These results have manager implications for major Korean airlines in terms of customer satisfaction and gender as ways to enhance customer retention.
The purpose of this study was to overview the meaning of customer loyalty to segment customers based on their loyalty and to analyze the difference of loyal customers' perception of relational benefits in the restaurant industries. A self-administered questionnaire was distributed to 500 adults with dining experience at restaurants. Participants were given a brief description of loyalty and were made to choose a specific restaurant they felt loyal to and one with no loyalty. Attitudinal and behavioral loyalty were used in cluster analysis resulting 4 cluster groups. Each group was named true, spurious, latent, and low loyalty. After the groups were separated, ANOVA was used to see if the score of perceived relational benefit showed difference. All four relational benefit including social, psychological, economic, and customization benefit showed significant difference(p<.001). True loyal customers perceived relational benefit as the highest while low loyal customers showed the lowest. For latent and spurious loyal customers, it was found that latent loyal customers showed higher perception than spurious customers.
Every port is competing for attracting loyal customers from other ports to achieve more profits stably. This paper proposes a data-mining scheme to facilitate this process. For resolving the problem, the OD (Origination-Destination) data are gathered from the AIS (Automatic Identification System) data. The OD data are clustered according to the arrival dates and ports. The FP-growth algorithm is applied to mine the frequent patterns of ships arriving at ports. Maintaining a loyal customer list for port updates and accuracy is critical in establishing its usefulness. These lists are critical as they can be used to provide suggestions for new products and services to loyal customers. Finally, based on the frequent patterns of the ships and the mode of arrival times, a formula proposed in this paper to derive shipping companies' loyalty to ports was applied. The case of Kaohsiung port was shown as an example of our algorithm, and the OD data of ships in 2017-2018 were processed. Using the results of our algorithm, other rival ports, such as Shanghai or Busan, may attract customers no longer loyal to Kaohsiung ports in the last two years and attract them as new loyal customers.
The purpose of this study is to classify customer by e-mailing responsiveness on time-series analysis and testify the effectiveness of grouping by ROI analysis. Response recency, response frequency and Activity(RFA) of e-mailing systems were adapted for Customer segmentations. ROI analysis were consisted of open, click-through, duration time, personalization, conversion rate and email loyalty index of email systems. Major findings are as follows: RFA analysis is used for customer segmentations that is fundamental process of e-CRM applications. Customer segmentations were loyal customer, odds customer, dormant customer, secession customer and observation customer by RFA grouping. Loyal customer group has high point in all ROI index compared to other groups. These results indicated that customer responsiveness of e-mailing systems were appropriate methods to grouping the customer with demographic variables. Therefore, effective e-mailing marketing strategy of e-Biz have suitable active DB and Behavior targeting is best approach to enforcing the target e-mailing marketing.
소매유통업에 있어 충성고객을 발견하고 효과적으로 관리하는 일은 마케팅 부서의 주요 관심사라고 할 수 있다. 최근 성숙된 유통 채널로 자리잡고 있는 인터넷 소매유통업도 다양한 마케팅 노력을 기울이고 있으며 그 성과가 기존 소매유통업 보다 클 것으로 기대하고 있는데 이는 인터넷 소매유통업이 기본적으로 디지털 기반 구조 하에 사업이 수행되기 때문이다. 그러나, 매출 규모가 확장됨에 따라 고객 관계가 보다 복잡해지고 거래 건수도 크게 확장되고 있는 인터넷 소매유통업은 전자적으로 이용 가능한 고객 관리 서비스를 필요로 하고 있다. 본 논문은 인터넷 소매유통업의 충성고객관리를 위한 웹서비스의 프레임웍 및 적용 사례를 제시하고 있다. 고객관리 웹서비스의 기본 모델은 전통적인 RFM분석에 기반을 두고 있는데 복잡한 충성고객관리 업무를 처리하는 에이전트를 제공한다. 인터넷 쇼핑몰이나 상점의 운영 시스템과 용이하게 통합될 수 있는 웹 서비스는 적은 비용으로 효과적인 고객 관리를 실현하는데 기여할 것으로 기대된다.
The purpose of this study is to classify customers by e-mail responsiveness on time-series analysis and testify the effectiveness of grouping by ROI analysis. Response recency, response frequency and Activity(RFA) of e-mailing systems are adapted for Customer segmentations. ROI analysis are consisted of open, click-through, duration time, personalization, conversion rate and email loyalty index of email systems. Major findings are as follows: RFA analysis is used for customer segmentations that is fundamental process of e-CRM applications. Customers can be grouped into loyal customers, odds customers, dormant customers, secession customers, and observation customers by RFA grouping. Loyal customer group has high point in all ROI index compared to other groups. These results indicated that customer responsiveness of e-mail systems were appropriate methods to group the customer with demographic variables. Therefore, effective e-mail marketing strategy of e-Biz should have suitable active DB and Behavior targeting is best approach to enforce the target e-mail marketing.
본 연구는 중소규모의 인터넷 전자상거래쇼핑몰의 소비자정보 최적화를 위한 마케팅모듈의 적용에 관한 연구이다. 본 연구에서 적용한 마케팅모듈은 e-CRM 의 RFM 모듈과 이메일에 대한 장기적인 고객반응도를 분석한 이메일 반응모듈이며, 이 두 가지 분석방법으로 분류된 소비자그룹에 대한 이메일발송을 통한 ROI 분석을 통해 마케팅모듈에 대한 타당성을 검증하고자 하였다. 연구결과 두 가지 모듈에 의해 분류된 각 그룹에 대한 ROI 분석결과 매출에 대한 기여도인 전환율, 개인화요소 및 이메일반응점수인 충성도지수 모두 우수고객이 타 고객에 비해 높은 것으로 나타났으며, 이메일 기초반응도인 오픈율, 인지율, 클릭율에서도 접수가 높은 것으로 나타났다. 따라서 자본, 인원의 제약이 따르는 중소 인터넷기업은 저비용, 고효율의 타겟 마케팅 전략으로서 유효DB를 확보해야 하며, 기업의 DB구조 및 특성에 따라 RFM 및 이메일반응 모듈과 같은 타당한 마케팅모듈을 채택하여 고객서비스 및 기업수익을 강화할 수 있을 것이다.
Customers' evaluation of Website with satisfaction is critical in electroniccommerce. Previous research has studied in a distinct approach; especially IT oriented constructs-perceived usefulness, easy of use and marketing oriented constructs-product, shopping experience, service quality. Despite those important previous studies regarding the usage and the purchase of goods and services, how consumers are satisfied and why consumers leave Web sites without purchasing have not been extensively researched. This study explored those determinants of consumer satisfaction with Web site using expectation-disconfirmation theory (EDT). The present paper extends the range of EDT from antecedents of expectation to consequence of satisfaction. The result suggests that experience and familiarity has an impact on expectation as well as perceived performance and satisfaction. Second, higher expectation makes a negative impact on disconfirmation of expectation. Third, positive disconfirmation of expectation makes a positive impact on satisfaction. Forth. satisfaction produces loyalty and repurchasing intention. Finally, loyal customer has stronger intention to repurchase than satisfied customer.
This study identifies the fashion luxury customer segments grouped by expenditures and the number of purchasing brands to verify the effects of perceived luxury consumption values on the intention to maintain a brand relationship for each group. A survey questionnaire was developed and implemented to collect data to measure fashion luxury expenditures, number of purchasing brands, luxury customer values, intention to maintain brand relationships, and demographic variables. A total of 326 responses were analyzed by factor analysis, multiple regression, one-way ANOVA, and $X^2$ analysis with SPSS18.0. Respondents were grouped by luxury expenditures; in addition, the number of purchasing brands were grouped into four segments of Switching/Heavy (31.6%), Switching/Light (19.9%), Loyal/Heavy (31.3%), and Loyal/Light (7.2%) Customer Group, that was different in terms of age and marital status. When the luxury customer value for the most patronized luxury brand was factor analyzed, five distinctive sub dimensions were identified, such as Social Value, Aesthetic/Expressive Value, Experiential Value, Quality Value, and Economic Value. For the Loyal/Heavy Group, the Experiential Value had a significant effect on the customer intention to maintain a brand relationship. For the Loyal/Light group, the Aesthetic /Expressive and Economic Value had a significant effect, and for the Switching/Heavy and Switching/Light Group, Quality and Economic Value had a significant effect on the customer intention to maintain a brand relationship. In conclusion, each luxury customer value in the behavioral segments works differently in influencing the intention to maintain a brand relationship. In addition, the implications for retail strategy were discussed based on the findings.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.