• Title/Summary/Keyword: Lower extremity injury

Search Result 166, Processing Time 0.027 seconds

Analysis of Risk Factors for Infection in Orthopedic Trauma Patients

  • Moon, Gi Ho;Cho, Jae-Woo;Kim, Beom Soo;Yeo, Do Hyun;Oh, Jong-Keon
    • Journal of Trauma and Injury
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 2019
  • Purpose: We perform an analysis of infection risk factors for fracture patients and confirm that the risk factors reported in previous studies increase the risk of actual infection among fractured patients. In addition, injury severity score (ISS) which is used as an evaluation tool for morbidity of trauma patients, confirms whether there is a relationship with infection after orthopedic fracture surgery. Methods: We retrospectively reviewed 1,818 patients who underwent fixation surgery at orthopedic trauma team, focused trauma center from January 1, 2015 to December 31, 2017. Thirty-five patients were infected after fracture surgery. We analyzed age, sex, open fracture criteria based on Gustilo-Aderson classification 3b, anatomical location (upper extremity or lower extremity) of fracture, diabetes, smoking, ISS. Results: Of 1,818 patients, 35 (1.9%) were diagnosed with postoperative infection. Of the 35 infected patients, nine (25.7%) were female and five (14.0%) were upper extremity fractures. Three (8.6%) were diagnosed with diabetes and eight (22.8%) were smokers. Thirteen (37.1%) had ISS less than nine points and six (17.1%) had ISS 15 points or more. Of 1,818 patients, 80 had open fractures. Surgical site infection were diagnosed in 12 (15.0%) of 80. And nine of 12 were checked with Gustilo-Aderson classification 3b or more. Linear logistic regression analysis was performed using statistical analysis program Stata 15 (Stata Corporation, College Station, TX, USA). In addition, independent variables were logistic regression analyzed individually after Propensity scores matching. In all statistical analyzes, only open fracture was identified as a risk factor. Conclusions: The risk factors for infection in fracture patients were found to be significantly influenced by open fracture rather than the underlying disease or anatomical feature of the patient. In the case of ISS, it is considered that there is a limitation. It is necessary to develop a new scoring system that can appropriately approach the morbidity of fracture trauma patients.

EMG Power Spectrum Analysis of Wearing Roller Shoes on Muscle Fatigue in the Lower Extremity during Walking (롤러 슈즈 착용 후 보행시 근피로 상태에서 하지근의 근전도 Power Spectrum 분석)

  • Kim, Youn-Joung;Yoon, Chang-Jin;Chae, Won-Sik;Lee, Min-Hyung;Kim, Hun-Soo;Jung, Mi-Ra
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.239-245
    • /
    • 2007
  • The purpose of this study was to compare the electromyography signal's power spectrum mean and median tendencies appearing in the lower extremity during walking while wearing roller shoes. 9 male subjects volunteered who have no experience riding inline-skate or roller-skate, and have no record of musculoskeletal disorder. Subjects walked on treadmill twice for an hour (Once a week, one trial with the roller on and the other without roller, Walking velocity = 1.39 m/s). Electromyography was measured every 15 minute (0, 15, 30, 45, 60 minutes). Surface electrode sticked muscle at rectus femoris(R.F.), vastus lateralis(V.L.), vastus medialis(V.M.), biceps femoris(B.F.), tibialis anterior(T.A.), gastrocnemius lateralis(G.L.), gastrocnemius medialis(G.M.). At Rectus femoris, Vastus Lateralis, Vastus medialis, and Biceps femoris showed no statistically significant decrease of median frequency or mean edge frequency as time passes. Also, between two treatments (wearing the roller shoes vs not wearing the roller shoes), no statistically significant difference. After 60 minutes, mean edge frequency showed statistically significant decrease at tibalis anterior and after 45 minutes, mean edge frequency showed statistically significant decrease compared to wearing roller shoes without the wheels at gastrocnemius lateralis. At gastrocnemius medialis after 30 minutes, median frequency showed statistically significant decrease, and showed statistically significant difference compared to the control group. Wearing the roller shoes with wheels for a long time resulted in statistically significant decrease of mean edge frequency and median frequency in lower extremity, especially in shank muscles. Increase of wearing time of roller shoes and walking on a bumpy road wearing roller shoes with wheels result fatigue and thus, danger of injury.

Analysis on lower extremity joint moment during a developpe devant (Developpe devant 수행시 하지 관절 모멘트 분석)

  • Park, Ki-Sa;Shin, Sung-Hu;Kwon, Moon-Seok;Kim, Tae-Hwan;Lee, Hung-Na
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.133-144
    • /
    • 2004
  • The purpose of this study was to analyze the joint moment on lower extremity during a developpe devant. Data were collected by Kwon3D, KwonGRF program. Two professional modem female dancers were participated in this experiment. Subjects performed a developpe devant in meddle heights. On the axes of X, Y, Z, it was shown that the maximum joint moment was occurred in hip joint. The moments are plotted during developpe devant. The ankle muscles generate a plantar flexion moment and the knee muscles generate a flexion moment and The hip muscles generate a extension moment. So these muscles of joint muscles were known to play a key role in keeping the body balance while doing developpe devant. In addition adduction moment occurred at hip, knee, an ankle in the order of amount, we could assume from this data that him out motion started from the hip joint. There was small active turn out possible below the hip joint. A small amount of extra turn out could be obtained when standing because of flexion between the foot and floor, which could be used to give a passive external rotation force to the whole leg and this could produce a rotation between the knee and foot. This passive external rotation could produce very damaging results. Therefore, lower extremity joint muscles such as hip, knee, and ankle muscle should be trained to keep the body balance and prevent injury during developpe devant performance. And for the safe and perfect turn ort performance, hip joint abduction, the most important external rotating muscle for him out is needed to train and full stretching should be done in advance.

The Effects of Contralateral Upper and Lower Limb and Trunk Muscle Activation During Ipsilateral Upper Limb D2 Pattern Exercise (한쪽 상지의 D2 패턴 운동동안 반대측 상지, 하지 및 체간 근육의 활성도에 미치는 영향)

  • Lee, Seung-Min;Lee, Sang-Yeol
    • PNF and Movement
    • /
    • v.16 no.1
    • /
    • pp.151-159
    • /
    • 2018
  • Purpose: The aim of this study was to examine the activation of the contralateral upper and lower extremities and trunk muscle during ipsilateral upper extremity diagonal isokinetic exercise. Methods: Twenty-one healthy male subjects with no history of shoulder injury undertook ipsilateral diagonal isokinetic exercise at 60, 120, and $180^{\circ}/sec$, utilizing a standard Biodex protocol. Muscle activation amplitudes were measured in the upper trapezius, pectoralis major, biceps brachii, rectus abdominis, external oblique, rectus femoris, adductor longus, and biceps femoris muscles using electromyography. A one-way analysis of variance and paired t-tests were conducted, and the data were analyzed using SPSS, version 21.0. Results: The results revealed no statistically significant interaction between motion and angular velocity and no statistically significant contralateral muscle activation according to angular velocity (p>0.05). However, they revealed statistically significant contralateral muscle activation according to motion (p<0.05). Conclusion: These results suggest that the movements involved in contralateral upper extremity diagonal isokinetic exercise can enhance muscle strength in patients affected by stroke, fracture, burns, or arthritis.

Lower Extremity Movement Patterns and Variability in Adolescent Athletes with Lateral Ankle Sprain History during Drop Vertical Jump (가쪽 발목 염좌 경험이 있는 유소년 운동선수의 착지 점프 시 하지 움직임 패턴 및 가변성)

  • Sunghe Ha;Inje Lee;Joo-Nyeon Kim
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.3
    • /
    • pp.85-93
    • /
    • 2023
  • Objective: This study examined differences in joint kinematics and movement variability of lower extremity between adolescent athletes with and without lateral ankle sprain (LAS) history during drop vertical jump. Method: Fourteen adolescent athletes with LAS history and 14 controls participated in this study. The independent variable was group while dependent variables were 3D joint kinematics and movement variability of hip, knee, and ankle joint. Ensemble curve analyses were conducted to identify differences in movement strategies between two groups. Results: The LAS group showed that greater eversion during jump phase compared with the control group. Additionally, less movement variability was found in the LAS group during the pre-landing and jump phases in ankle and hip joints compared with the control group. Conclusion: The LAS group may adapt the environmental constraints by reducing the movement variability in ankle and hip joints. However, training programs focusing on recovery of ankle function should be emphasized after LAS because excessive pronation for prevention of LAS during the jump phase may result in reduced performance.

The Effect of Elastic Tape on Lower Extremity Muscle Activity in Squats of Young Female Adults: A Cross-sectional Pilot Study

  • Namjeong Cho;Yangrae Kim
    • Physical Therapy Korea
    • /
    • v.30 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • Background: In terms of physical performance, elastic tape (ET) is known to contribute to injury prevention and performance enhancement. Objects: This study aimed to compare and analyze the effect on lower extremity muscle activity of young adult women with and without ET during squats. Methods: In this study, six healthy, young women were recruited as participants in a university laboratory. Participants were allocated to two groups of three after measuring muscle activity in a pre-test, and the experiment was conducted for a total of two weeks (two sessions). First, 10 half squats were taped once in the first week, and 10 half squats were performed without taping in the second week. The other group did this in reverse and measured muscle activity after the squat was over. Results: As a result of this study, there was no significant difference in the quadriceps with or without ET (Z = -0.11, p > 0.05). Similarly, no significant difference was found in hamstring (Z = -0.31, p > 0.05). Conclusion: No beneficial effect was found on changes in muscle activity following ET application during squats. Further studies require randomized controlled trials that increase the number of participants and the intensity of the intervention, and measure pain, function, and performance rather than muscle properties depending on the biomechanical lifting mechanism.

The Effects of Landing Height on the Lower Extremity Injury Mechanism during a Counter Movement Jump (착지 후 점프 시 높이가 하지 관절의 변화와 부상기전에 미치는 영향)

  • Cho, Joon-Haeng
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • The purpose of this study was to determine the effects of landing height on the lower extremity during a counter movement jump. Fourteen healthy male subjects (age: $27.00{\pm}2.94$ yr, height: $179.07{\pm}5.03$ cm, weight: $78.79{\pm}6.70$ kg) participated in this study. Each subject randomly performed three single-leg jumps after s single-leg drop landing (counter movement jump) on a force platform from a 20 cm and 30 cm platform. Paired t-test (SPSS 18.0; SPSS Inc., Chicago, IL) was performed to determine the difference in kinematics and kinetics according to the height. All significance levels were set at p<.05. The results were as follows. First, ankle and knee joint angles in the sagittal plane increased in response to increasing landing height. Second, ankle and knee joint angles in the frontal plane increased in response to increasing landing height. Third, there were no significant differences in the moment of each segment in the sagittal plane for the jumping height increment. Fourth, ankle eversion moment and knee valgus moment decreased but hip abduction moment increased for the jumping height increment. Fifth, Ankle and knee joint powers increased. In percentage contribution, the ankle joint increased but the knee and hip joints decreased at a greater height. Lastly, as jumping height increased, the power generation at the ankle joint increased. Our findings indicate that the height increment affect on the landing mechanism the might augment loads at the ankle and knee joints.

The effect of hip joint strengthening exercise using proprioceptive neuromuscular facilitation on balance, sit to stand and walking ability in a person with traumatic brain injury: a case report

  • Jung, Du Kyo;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.2
    • /
    • pp.96-104
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effect of the hip joint strengthening exercises using proprioceptive neuromuscular facilitation (PNF) on the clinical symptoms and the treatment effects in balance, sit to stand, and gait abilities in patients with TBI. Design: A single case study. Methods: A 13-year-old adolescent with quadriplegia and hip joint control impairment participated in this four-week training intervention. The patient, diagnosed with TBI, wastreated with hip joint strengthening exercises using PNF. In the first week, we focused on strengthening the body, relaxing the hip flexors and activating the hip extensor muscles in order to solve the patient's physical function and body structure. From the 2nd and 4th week, we improved the motivation through the task-oriented method, and then weight-bearing training of the right lower extremity was proceeded by kicking a soccor ball with the left lower extremity. The exercises were performed for 4 weeks, 5 days a week, for 60 minutes with the exercise intensity gradually increased according to the subject's physical abilities. Results: As a result of the study, the patient demonstrated improvements in the physical examination, which were evaluated before and after intervention and included the manual muscle test, modified Ashworth scale, sensory assessment, coordination assessment, Berg balance scale, 5-time sit to stand test, and the 10 meters walk test. Conclusions: The results of this case suggest that a hip joint strengthening exercise program using PNF may improve hip control ability, balance, sit to stand and gait ability in a patient with TBI.

Influence of Midsole Hardness on Vertical Ground Reaction force and Heel Strike Angle during Men's and Women's Running (남녀 주행 시 수직 지면반력 및 착지 각도에 미치는 신발 중저 경도의 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.379-386
    • /
    • 2009
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate the influence of midsole hardness on vertical ground force and heel strike angle during men's and women's running. Five male and five female expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. In conclusion, regardless of gender, there was ill significant difference among three shoes in maximum vertical ground reaction force, impact force peak and stance time. However, the loading time decreased and the loading rate increased as the midsole became harder. Female subjects showed more sensitive reaction with respect to the midsole hardness, while male subjects showed subtle difference. The authors expect to apply this results for providing a guideline for utilizing proper midsole hardness of gender-specific shoe.

바이오센서

  • 홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.109-111
    • /
    • 1989
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients.

  • PDF