• 제목/요약/키워드: Low-voltage scanning electron microscopy

검색결과 44건 처리시간 0.031초

Precise Comparison of Two-dimensional Dopant Profiles Measured by Low-voltage Scanning Electron Microscopy and Electron Holography Techniques

  • Hyun, Moon-Seop;Yoo, Jung-Ho;Kwak, Noh-Yeal;Kim, Won;Rhee, Choong-Kyun;Yang, Jun-Mo
    • Applied Microscopy
    • /
    • 제42권3호
    • /
    • pp.158-163
    • /
    • 2012
  • Detailed comparison of low-voltage scanning electron microscopy and electron holography techniques for two-dimensional (2D) dopant profiling was carried out with using the same multilayered p-n junction specimen. The dopant profiles obtained from two methods are in good agreement with each other. It demonstrates that reliability of dopant profile measurement can be increased through precise comparison of 2D profiles obtained from various microscopic techniques.

주사 전자 현미경에서 영상 획득에 필요한 구성 요소 구현 (Realization for Each Element for capturing image in Scanning Electron Microscopy)

  • 임선종;이찬홍
    • 한국레이저가공학회지
    • /
    • 제12권2호
    • /
    • pp.26-30
    • /
    • 2009
  • Scanning Electron Microscopy (SEM) includes high voltage generator, electron gun, column, secondary electron detector, scan coil system and image grabber. Column includes electron lenses (condenser lens and objective lens). Condenser lens generates fringe field, makes focal length and control spot size. Focal length represents property of lens. Objective lens control focus. Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lens and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. In this paper, we describe the result of research to develop the core elements for low-resolution SEM.

  • PDF

저밀도 폴리에틸렌 박막의 전기적 특성에 미치는 전자선의 영향 (The Effect of Electron Beam Irradiation on the Electrical Characteristics of Low Density Polyethylene film (I))

  • 조돈찬;신종열;차광훈;이수원;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.82-85
    • /
    • 1996
  • It is considered that the effect of radiation aging, such as electron beam due to the ultra-high voltage for transmission, on the physical properties and electrical characteristics of electrital insulating materials. Low-density polyethylene(thickness 100[${\mu}{\textrm}{m}$]) is selected as an experimental specimen. Fourier transform infra-red spectrum, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy is used so as to analysis the physical properties, the morphological changes and the crystallinity of LDPE. And it is made an experiments of dielectric characteristics in the temperature range of 20[$^{\circ}C$]~120[$^{\circ}C$], in the frequency range of 30[Hz]~1.5$\times$10$^{5}$ [Hz] and in the applied voltage range of 300[mV]~1500[mV].

  • PDF

TEM sample preparation of microsized LiMn2O4 powder using an ion slicer

  • Jung Sik Park;Yoon‑Jung Kang;Sun Eui Choi;Yong Nam Jo
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.19.1-19.7
    • /
    • 2021
  • The main purpose of this paper is the preparation of transmission electron microscopy (TEM) samples from the microsized powders of lithium-ion secondary batteries. To avoid artefacts during TEM sample preparation, the use of ion slicer milling for thinning and maintaining the intrinsic structure is described. Argon-ion milling techniques have been widely examined to make optimal specimens, thereby making TEM analysis more reliable. In the past few years, the correction of spherical aberration (Cs) in scanning transmission electron microscopy (STEM) has been developing rapidly, which results in direct observation at an atomic level resolution not only at a high acceleration voltage but also at a deaccelerated voltage. In particular, low-kV application has markedly increased, which requires a sufficiently transparent specimen without structural distortion during the sample preparation process. In this study, sample preparation for high-resolution STEM observation is accomplished, and investigations on the crystal integrity are carried out by Cs-corrected STEM.

저전압 PEO 양극산화 공정을 위한 Ti 전처리 조건의 최적화 연구 (Optimization of Pretreatment Conditions for Ti Surface in the Low Voltage PEO Anodization Process)

  • 하동흔;최진섭
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.439-446
    • /
    • 2017
  • Plasma electrolyte oxidation (PEO) is a kind of anodization, in which a very high voltage or current is applied to a metal substrate in various electrolytes, allowing distinctly thick thickness of the oxide film with outstanding film properties, such as a good corrosion resistance, mechanical strength, thermal stability, and excellent adhesion to a substrate. Herein, we tried to find the optimal pretreatment conditions among commercially available solutions in order to produce PEO anodizing at relatively low voltage. We characterized the surface morphologies of the sample by scanning electron microscope (SEM), atomic force microscopy (AFM), and investigated color parameters of the pretreated surface of Ti by spectrophotometer.

Influence of surface morphology and thickness of molecular thin films on the performance of SubPc-$C_{60}$ photovoltaic devices

  • Kim, Jin-Hyun;Gong, Hye-Jin;Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2011
  • Over the past decades, organic semiconductors have been investigated intensely for their potential in a wide range of optoelectronic device applications since the organic materials have advantages for very light, flexible and low cost device fabrications. In this study, we fabricated small-molecule organic solar cells (OSCs) based on chloro[subphthalocyaninato]boron(III) (SubPc) as an electron donor and $C_{60}$ as an electron acceptor material. Recently SubPc, a cone-shaped molecule with $14{\pi}$-electrons in its aromatic system, has attracted growing attention in small-molecule OSC applications as an electron-donating material for its greater open-circuit voltage (VOC), extinction coefficient and dielectric constant compared to conventional planar metal phthalocyanines. In spite of the power conversion efficiency (PCE) enhancement of small-molecule OSC using SubPc and $C_{60}$, however, the study on the interface between donor-acceptor heterojunction of this system is limited. In this work, SubPc thin films at various thicknesses were deposited by organic molecular beam deposition (OMBD) and the evolution of surface morphology was observed using atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). We also investigated the influence of film thickness and surface morphology on the PCE of small-molecule OSC devices.

  • PDF

Field Emission Characteristics of Deffctive Diamond Films

  • Koh, Ken-Ha;Park, Kyung-Ho;Lee, Soon-Il
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.160-166
    • /
    • 1998
  • The field emission characteristics of defective diamond films grown by microwave plasma enhanced chemical vapor deposition (MPECVD) have been studied. X-ray diffraction, the poor crystal quality and/or small grain sizes of the diamond phase and the inclusion of the non-diamond carbon phases in these films have been condirmed by raman spectroscopy, scanning electron microscopy, atomic force microscopy, and the reflectance measurements. The degrees of the film defectiveness and the emission characteristics were dependent on the methane concentration. Current-versus-voltage measurements have demonstrated that the defective diamond films have good electron emission characteristics. characteristics strongly suggests the defect-related electron-emission mechanism. The defective diamond films deposited on Si substrates show the field emission current density of 1$\mu\textrm{A}/\textrm{cm}^2$ and 1mA/$\textrm{cm}^2$ have been measured at electric fields as low as 4.5V/$\mu\textrm{m}$ and 7.6V/$\mu\textrm{m}$, respectively. We also observed the similar emission characteristics from the defective diamond film deposited on Cr/Si substrate and could decrease the deposition temperature to $600^{\circ}C$.

  • PDF

오옴성 접합에서의 낮은 접촉 저항을 갖는 Pt/Ti/P형 4H-SiC (Low resistivity ohmic Pt/Ti contacts to p-type 4H-SiC)

  • 이주헌;양성준;김창교;조남인;정경화;신명섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1378-1380
    • /
    • 2001
  • Ohmic contacts have been fabricated on p-type 4H-SiC using Pt/Ti. Low resistivitf Ohmic contacts of Pt/Ti to p-type 4H-SiC were investigated. Specific contact resistances were measured using the transmission line model method, and the physical properties of the contacts were examined using x-ray diffraction, scanning electron microscopy. Ohmic behavior with linear current-voltage characteristics was observed following anneals at $900^{\circ}C$ for 90sec at a pressure of $3.4{\times}10^{-5}$ Torr. The Pt/Si/Ti films was measured lower value of the specific contact resistance by the annealing process, and the contact resistances were improved more than one order compared to Ti contact the annealed sample. Scanning electron microscopy shows that the Pt layer effectively reduce the oxidation of Ti films. And results are obtained as $4.6{\times}10^{-4}$ ohm/$cm^2$ for a Pt/Ti metal structure after a vacuum annealing at $900^{\circ}C$ for 90sec. Titanium has a relatively high melting point, thus Ti-based metal contacts were attempted in this study.

  • PDF

Reliable and High Spatial Resolution Method to Identify the Number of MoS2 Layers Using a Scanning Electron Microscopy

  • Sharbidre, Rakesh Sadanand;Park, Se Min;Lee, Chang Jun;Park, Byong Chon;Hong, Seong-Gu;Bramhe, Sachin;Yun, Gyeong Yeol;Ryu, Jae-Kyung;Kim, Taik Nam
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.705-709
    • /
    • 2017
  • The electronic and optical characteristics of molybdenum disulphide ($MoS_2$) film significantly vary with its thickness, and thus a rapid and accurate estimation of the number of $MoS_2$ layers is critical in practical applications as well as in basic researches. Various existing methods are currently available for the thickness measurement, but each has drawbacks. Transmission electron microscopy allows actual counting of the $MoS_2$ layers, but is very complicated and requires destructive processing of the sample to the point where it will no longer be useable after characterization. Atomic force microscopy, particularly when operated in the tapping mode, is likewise time-consuming and suffers from certain anomalies caused by an improperly chosen set point, that is, free amplitude in air for the cantilever. Raman spectroscopy is a quick characterization method for identifying one to a few layers, but the laser irradiation causes structural degradation of the $MoS_2$. Optical microscopy works only when $MoS_2$ is on a silicon substrate covered with $SiO_2$ of 100~300 nm thickness. The last two optical methods are commonly limited in resolution to the micrometer range due to the diffraction limits of light. We report here a method of measuring the distribution of the number of $MoS_2$ layers using a low voltage field emission electron microscope with acceleration voltages no greater than 1 kV. We found a linear relationship between the FESEM contrast and the number of $MoS_2$ layers. This method can be used to characterize $MoS_2$ samples at nanometer-level spatial resolution, which is below the limits of other methods.