Browse > Article
http://dx.doi.org/10.5695/JKISE.2017.50.6.439

Optimization of Pretreatment Conditions for Ti Surface in the Low Voltage PEO Anodization Process  

Ha, Dongheun (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.50, no.6, 2017 , pp. 439-446 More about this Journal
Abstract
Plasma electrolyte oxidation (PEO) is a kind of anodization, in which a very high voltage or current is applied to a metal substrate in various electrolytes, allowing distinctly thick thickness of the oxide film with outstanding film properties, such as a good corrosion resistance, mechanical strength, thermal stability, and excellent adhesion to a substrate. Herein, we tried to find the optimal pretreatment conditions among commercially available solutions in order to produce PEO anodizing at relatively low voltage. We characterized the surface morphologies of the sample by scanning electron microscope (SEM), atomic force microscopy (AFM), and investigated color parameters of the pretreated surface of Ti by spectrophotometer.
Keywords
Plasma Electrolytic oxidation; Pretreatment process; Low voltage; Ti;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shokouhfar, M., Dehghanian, C., Montazeri, M., Baradaran, A., Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II, Appl. Surf. Sci. 258 (2012) 2416-2423.   DOI
2 Curran, J., Clyne, T., Thermo-physical properties of plasma electrolytic oxide coatings on aluminium, Surface and Coatings Technology 199 (2005) 168- 176.   DOI
3 Khorasanian, M., Dehghan, A., Shariat, M., Bahrololoom, M., Javadpour, S., Microstructure and wear resistance of oxide coatings on Ti-6Al- 4V produced by plasma electrolytic oxidation in an inexpensive electrolyte, Surface and coatings Technology 206 (2011) 1495-1502.   DOI
4 Hussein, R., Nie, X., Northwood, D., Yerokhin, A., Matthews, A., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process, J. Phys. D 43 (2010) 105203.   DOI
5 Han, Y., Hong, S., Xu, K., Porous nanocrystalline titania films by plasma electrolytic oxidation, Surface and Coatings Technology 154 (2002) 314- 318.   DOI
6 Matykina, E., Arrabal, R., Skeldon, P., Thompson, G., Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium, Acta biomaterialia 5 (2009) 1356-1366.   DOI
7 Stojadinovic, S., Vasilic, R., Petkovic, M., Zekovic, L., Plasma electrolytic oxidation of titanium in heteropolytungstate acids, Surface and Coatings Technology 206 (2011) 575-581.   DOI
8 Baszkiewicz, J., Krupa, D., Mizera, J., Sobczak, J., Bilinski, A., Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment, Vacuum 78 (2005) 143-147.   DOI
9 Khan, R. H., Yerokhin, A., Matthews, A., Structural characteristics and residual stresses in oxide films produced on Ti by pulsed unipolar plasma electrolytic oxidation, Philosophical Magazine 88 (2008) 795-807.   DOI
10 de Hazan, Y., Zimmermann, D., Z'graggen, M., Roos, S., Aneziris, C., Bollier, H., Fehr, P., Graule, T., Homogeneous electroless Ni-P/SiO 2 nanocomposite coatings with improved wear resistance and modified wear behavior, Surface and Coatings Technology 204 (2010) 3464-3470.   DOI
11 Ghasemi, A., Raja, V., Blawert, C., Dietzel, W., Kainer, K., The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings, Surface and Coatings Technology 204 (2010) 1469-1478.   DOI
12 Jiang, Y., Zhou, H., Zeng, S., Microstructure and properties of oxalate conversion coating on AZ91D magnesium alloy, Transactions of nonferrous metals society of china 19 (2009) 1416-1422.   DOI
13 Rafieerad, A., Ashra, M., Mahmoodian, R., Bushroa, A., Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper, Materials Science and Engineering: C 57 (2015) 397-413.   DOI
14 Ou, J., Liu, M., Li, W., Wang, F., Xue, M., Li, C., Corrosion behavior of superhydrophobic surfaces of Ti alloys in NaCl solutions, Appl. Surf. Sci. 258 (2012) 4724-4728.   DOI
15 Alves, S., Bayon, R., Igartua, A., Saenz de Viteri, V., Rocha, L., Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants, Lubr Sci 26 (2014) 500-513.   DOI
16 Venkateswarlu, K., Rameshbabu, N., Sreekanth, D., Bose, A., Muthupandi, V., Subramanian, S., Fabrication and characterization of micro-arc oxidized fluoride containing titania films on Cp Ti, Ceram. Int. 39 (2013) 801-812.   DOI
17 Aliasghari, S., Skeldon, P., Thompson, G., Plasma electrolytic oxidation of titanium in a phosphate/ silicate electrolyte and tribological performance of the coatings, Appl. Surf. Sci. 316 (2014) 463-476.   DOI
18 Lu, X., Mohedano, M., Blawert, C., Matykina, E., Arrabal, R., Kainer, K. U., Zheludkevich, M. L., Plasma electrolytic oxidation coatings with particle additions-A review, Surface and Coatings Technology 307 (2016) 1165-1182.   DOI
19 Abu Ghalwa, N. M., Zaggout, F. R., Electrodegradation of methylene blue dye in water and wastewater using lead oxide/titanium modified electrode, Journal of Environmental Science and Health Part A 41 (2006) 2271-2282.   DOI
20 Yao, Z., Jia, F., Tian, S., Li, C., Jiang, Z., Bai, X., Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation, ACS applied materials & interfaces 2 (2010) 2617-2622.   DOI
21 Lu, X., Blawert, C., Huang, Y., Ovri, H., Zheludkevich, M. L., Kainer, K. U., Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO 2 particles, Electrochim. Acta 187 (2016) 20-33.   DOI
22 Klokkevold, P. R., Nishimura, R. D., Adachi, M., Caputo, A., Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit., Clin. Oral Implants Res. 8 (1997) 442-447.   DOI
23 Jonasova, L., Müller, F. A., Helebrant, A., Strnad, J., Greil, P., Biomimetic apatite formation on chemically treated titanium, Biomaterials 25 (2004) 1187-1194.   DOI
24 Wang, Y., Yu, H., Chen, C., Zhao, Z., Review of the biocompatibility of micro-arc oxidation coated titanium alloys, Mater Des 85 (2015) 640-652.   DOI
25 Matykina, E., Skeldon, P., Thompson, G., Fundamental and practical evaluation of plasma electrolytic oxidation coatings of titanium, Surface Engineering 23 (2007) 412-418.   DOI
26 Huang, P., Wang, F., Xu, K., Han, Y., Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages, Surface and Coatings Technology 201 (2007) 5168-5171.   DOI
27 Li, Q.; Liang, J.; Wang, Q. In Plasma electrolytic oxidation coatings on lightweight metals; Modern Surface Engineering Treatments; Intech: 2013;.
28 Simka, W., Sadkowski, A., Warczak, M., Iwaniak, A., Dercz, G., Michalska, J., Maciej, A., Characterization of passive films formed on titanium during anodic oxidation, Electrochim. Acta 56 (2011) 8962-8968.   DOI
29 Wang, H., Zhu, R., Lu, Y., Xiao, G., Zhao, X., He, K., Yuan, Y., Li, Y., Ma, X., Preparation and properties of plasma electrolytic oxidation coating on sandblasted pure titanium by a combination treatment, Materials Science and Engineering: C 42 (2014) 657-664.   DOI
30 El Achhab, M., Erbe, A., Koschek, G., Hamouich, R., Schierbaum, K., A microstructural study of the structure of plasma electrolytically oxidized titanium foils, Applied Physics A 116 (2014) 2039- 2044.   DOI