• 제목/요약/키워드: Low-voltage Distribution System

검색결과 201건 처리시간 0.028초

차세대 저궤도 소형위성 적용을 위한 전력시스템 설계 (Power System Design for Next Generation LEO Satellite Application)

  • 박성우;박희성;장진백;장성수
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

22.9kV 배전선로 전력손실산출 기법에 관한 연구 (A Study on Calculation Method of Power Losses in 22.9kV Power Distribution Lines)

  • 황인성;홍순일;문종필
    • 전기학회논문지P
    • /
    • 제66권4호
    • /
    • pp.219-223
    • /
    • 2017
  • In this paper, we calculated the losses in the high voltage lines of power distribution system. The losses caused by high voltage lines are calculated using maximum current, resistance, loss factor, and dispersion loss factor. The accurate extraction of these factors are very important to calculate the losses exactly. Thus, the maximum loads are subdivided to regions and calculated monthly for more accurate maximum current calculation. Also, the composite resistance is calculated according to the ratio of the used wire types. In order to calculate the loss factor, the load factors according to the characteristics of each region were calculated. Finally, the losses of the distribution system is calculated by adding the losses by the transformers and the low voltage lines.

Development of Fault Detector for Series Arc Fault in Low Voltage DC Distribution System using Wavelet Singular Value Decomposition and State Diagram

  • Oh, Yun-Sik;Han, Joon;Gwon, Gi-Hyeon;Kim, Doo-Ung;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.766-776
    • /
    • 2015
  • It is well known that series arc faults in Low Voltage DC (LVDC) distribution system occur at unintended points of discontinuity within an electrical circuit. These faults can make circuit breakers not respond timely due to low fault current. It, therefore, is needed to detect the series fault for protecting circuits from electrical fires. This paper proposes a novel scheme to detect the series arc fault using Wavelet Singular Value Decomposition (WSVD) and state diagram. In this paper, the fault detector developed is designed by using three criterion factors based on the RMS value of Singular value of Approximation (SA), Sum of the absolute value of Detail (SD), and state diagram. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed scheme using ElectroMagnetic Transient Program (EMTP) software. EMTP/MODELS is also utilized to implement the series arc model and WSVD. Simulation results according to various conditions clearly show the effectiveness of the proposed scheme.

전용통신선을 이용한 배전선로 자동운전과 저압배전선을 이용한 원격검침 (Feeder Automation using the communication cable and Automatic Meter Reading using the low voltage distribution line)

  • 조남훈;하복남;윤일환;장완성;김종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.680-682
    • /
    • 1996
  • Korea Distribution Automation System(KODAS) has been designed and implemented for feeder automation using the paircable as communication media. And we bave been developed the telemetering system using the low voltage line. Kepco have been constructed approximately 60% of the Cable TV(CATV) networks in large city in Korea since 1995, so we have been researching the feeder automation based on CATV networks also. We will contruct the system using its in the area with of cable-TV networks and paircable line in the other area for communication media in future.

  • PDF

A Techno-Economic Feasibility Analysis on LVDC Distribution System for Rural Electrification in South Korea

  • Afamefuna, David;Chung, Il-Yop;Hur, Don;Kim, Ju-Yong;Cho, Jintae
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1501-1510
    • /
    • 2014
  • Low voltage direct current (LVDC) distribution system is a suitable techno-economic candidate which can create an innovative solution for distribution network development with respect to rural electrification. This research focuses on the use of LVDC distribution system to replace some of KEPCO's existing traditional medium voltage alternating current (MVAC) distribution network for rural electrification in South Korea. Considering the technical and economic risks and benefits involved in such project, a comparative techno-economic analysis on the LVDC and the MVAC distribution networks is conducted using economic assessment method such as the net present value (NPV) on a discounted cash flow (DCF) basis as well as the sensitivity analysis technique. Each would play a role in an economic performance indicator and a measure of uncertainty and risk involved in the project. In this work, a simulation model and a computational tool are concurrently developed and employed to aid the techno-economic analysis, evaluation, and estimation of the various systems efficiency and/or performance.

전력품질을 고려한 LVDC 배전계통의 신뢰도 분석 (A Reliability Analysis in LVDC Distribution System Considering Power Quality)

  • 노철호;김충모;김두웅;권기현;오윤식;한준;김철환
    • 조명전기설비학회논문지
    • /
    • 제29권4호
    • /
    • pp.54-61
    • /
    • 2015
  • Recently, DC-based power system is being paid attention as the solution for energy efficiency. As the example, HVDC (High Voltage DC) transmission system is utilized in the real power system. On the other hand, researches on LVDC (Low Voltage DC) distribution system, which are including digital loads, are not enough. In this paper, reliability in LVDC distribution system is analyzed according to the specific characteristics such as the arrangement of DC/DC converters and the number of poles. Furthermore, power quality is also taken account of since LVDC distribution system includes multiple sensitive loads and electric power converters. In order to achieve this, LVDC distribution systems are modeled using ElectroMagnetic Transient Program (EMTP) and both the minimal cut-set method and Customer Interruption Cost (CIC) are used in the reliability analysis.

고전압 입력용 SMPS의 고효율 전략 (High Efficiency Strategy of High Input Voltage SMPS)

  • 우동영;박성미;박성준
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.365-371
    • /
    • 2019
  • Recently, the demonstration and research on the power transmission using high voltage DC such as HVDC(High Voltage DC), Smart Grid, DC transmission and distribution have been actively conducted. In order to control the power converter in high-voltage DC power transmission system, SMPS(Switching Modulation Power Supply) for power converter control using high-voltage DC input is essential. However, the demand for high-pressure SMPS is still low, so the development is not enough. In the low-output SMPS using the high-voltage input, it is difficult to achieve high efficiency due to the switching transient loss especially at light load. In this paper, we propose a new switching scheme for high power SMPS control for low output power. The proposed method can provide better efficiency increase effect in the light load region compared to the existing PWM method. To verify the feasibility of the proposed method, a 40 W SMPS for HVDC MMC(Modulation Multi-level Converter) was designed and verified by simulation.

Development of the High Input Voltage Self-Power for LVDC

  • Kim, Kuk-Hyeon;Kim, Soo-Yeon;Choi, Eun-Kyung;HwangBo, Chan;Park, Seong-Mi;Park, Sung-Jun
    • 한국산업융합학회 논문집
    • /
    • 제24권4_1호
    • /
    • pp.387-395
    • /
    • 2021
  • Distributed resources such as renewable energy sources and ESS are connected to the low voltage direct current(LVDC) distribution network through the power conversion system(PCS). Control power is required for the operation of the PCS. In general, controller power is supplied from AC power or DC power through switch mode power supply(SMPS). However, the conventional SMPS has a low input voltage, so development and research on high input voltage self-power suitable for LVDC is insufficient. In this paper, to develop Self-Power that can be used for LVDC, the characteristics of the conventional topology are analyzed, and a series-input single-output flyback converter using a flux-sharing transformer for high voltage is designed. The high input voltage Self-Power was designed in the DCM(discontinuous current mode) to reduce the switching loss and solve the problem of current dissipation. In addition, since it operates even at low input voltage, it can be applied to many applications as well as LVDC. The validity of the proposed high input voltage self-power is verified through experiments.

인버터 스위칭 써지에 의한 저압 유도전동기의 과도전압 분포해석 (Analysis of Overvoltage Distribution in Low-Voltage Induction Motor Due to Inverter Switching Surge)

  • 황돈하;김용주;이인우;배성우;김동희;노채균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1151-1153
    • /
    • 2003
  • In this paper, switching surge voltage distribution in stator windings of induction motor driven by IGBT PWM inverter is studied. To analyze the irregular voltage of stator winding, equivalent circuit model of inverter-cable-motor was proposed and high frequency parameter is computed by using finite element method (FEM). Electromagnetic transient program (EMTP) analysis of the whole system for induction motor and PWM inverter is proposed. In order to experiment, an induction motor, 380 [V], 50 [HP], with taps from one phase and a switching surge generator was built to consider the voltage distribution.

  • PDF

DC 혼합배전시스템에서 지중계통의 뇌과전압 해석 (Lightning Surge Analysis on Underground System in DC Combined Distribution System)

  • 안천용;이종범
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.737-743
    • /
    • 2013
  • This paper describes the overvoltage through lightning surge analysis on underground system in DC combined distribution systems. It is considered that operating micro grid including distributed generation with smart grid can make possibility of composing new distribution system different from existing one. However, there are many papers about low voltage DC distribution in grids or buildings but not many about replacement or distributing 22.9kV AC distribution system to DC system. Among many research need for DC system development, overvoltage is studied in this paper. Overvoltage is simulated on DC cable when lightning strikes to overhead grounding wire which is installed at the nearest location from power cable section. Analysis as well as modeling is performed in EMTP/ATPDraw. It is evaluated that analysis results can be used to design of DC underground distribution power cable system.