• Title/Summary/Keyword: Low-swirl burner

Search Result 32, Processing Time 0.023 seconds

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Hae-Joo;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

Study on Operating Characteristics for NOx Reduction in Ultra Low NOx Burner Combustion Using 80 kW Furnace (80 kW 초 저 NOx 단일 버너 연소로에서 NOx 감소를 위한 운전특성 연구)

  • Chae, Taeyoung
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This experimental study investigates the design parameters to achieve ultra low NOx combustion of coal using a 80 kW capacity single-burner furnace. The influence of key design parameters such as SN, overall and burner-zone equivalence ratios, primary/secondary air ratio, overfire air (OFA) ratio were tested for a total of 81 cases. The results showed that weak swirl intensity of the burner leads to higher NOx emission whereas strong swirl intensity accompanies increased CO concentration desipte lower NOx emission. Therefore, finding an appropirate swirl intensity is essential for the burner design. Larger flow rate of secondary air increased NOx emission, whereas smaller flow rate stretches the flame and increased CO emission. The lowest NOx emission of 82 ppm (6% O2) was achieved at the optimal condition of the present burner deisgn. It is expected to furrther lower the NOx emission by introducing splitting the burner secondary air into three or four streams.

The Characteristics of the Flow and Combustion in a Turbulent Non-Premixed Flat Flame (난류 비예혼합 평면화염의 유동과 연소 특성)

  • Kwark, Ji-Hyun;Jung, Yong-Ki;Jun, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl number on the flow and combustion characteristics. First. stream lines and velocity distribution in the flow field were obtained using PIV method. In contrast with the axial flow without swirl, highly swirled air induced stream lines along the burner tile. and backward flow was caused by recirculation in the center zone of the flow field. In the combustion. the flame with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure by measuring OH and CH radicals intensity and by calculating Damkohler number(Da) and turbulence Reynolds number(Re$_{T}$) was examined. It appeared to be comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the burned gas decreased the flame temperature and emissions concentrations as NO and CO. Consequently, the stable flat flame with low NO concentration was achieved.d.

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

A study of Overall Combustion Characteristics according to the Air Preheated Temperature in a Hybrid/Dual Swirl Jet Combustor (하이브리드/이중 선회제트 연소기에서 공기 예열온도에 의한 배출 특성 연구)

  • Choi, Inchan;Jo, Junik;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.149-152
    • /
    • 2012
  • The laboratory experiments have been conducted to investigate the effects of air preheated temperature on the emission characteristics by a model gas turbine burner with a hybrid/dual swirl jet flames configuration. The concentration of NOx and CO emissions, and flue gas temperature at combustor exit were measured with varying the equivalence ratio for different air preheated temperatures of 300, 400, 500K at atmospheric pressure. It was overall shown that the NOx and CO emissions, and flue gas temperature were decreased according to the decreasing of equivalence ratio due to the effects of lean premixed combustion regardless of the air preheated temperature. Experimental results of a lean premixed flames configuration indicated that the NOx emission was increased with higher inlet air temperature and air flow rate, which is attributed to the increasing of flue gas temperature and heat release related to the thermal NOx mechanism. But the CO emission was shown the opposite tendency, that is, the CO emission was decreased with increasing of inlet air temperature and flow rate.

  • PDF

A study on the NOx emission characteristics with combustion air flow conditions in air-staged coal burner (공기다단 석탄버너에서 연소공기 유동조건에 따른 NOx 배출특성에 관한 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Kim, Sang-Hyeun;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.379-384
    • /
    • 2003
  • Coal-burning utilities are facing a major NOx control compliance challenge due to the heavy emission regulation. In response to this challenge, some applicative technologies to effectively reduce NOx are developed and applied in the pulverized coal power plants. One of these is low NOx burner(LNB) equipped with multi-staged air register. In this study, NOx emission rate and flame shapes are investigated with secondary and tertiary air flow conditions in air staged coal burner, and the optimal windows of flow conditions to minimize NOx emission rate are found out. The test conditions treated in this study are the flow rate, swirl direction and intensity and throat injection velocity of secondary and tertiary air.

  • PDF

An Experiment on Low NOx Combustion Characteristics in a Multi-Staged Burner (다단연소기를 이용한 저 NOx 연소특성 연구)

  • Cho, Eun-Seong;Sung, Yong-Jin;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Staged combustion, such as air- and fuel-staging, is a relatively well-known technique fur reduction of NOx emission and used in combination with other techniques nowadays. However, the design variables are still selected depending upon operating conditions. There are many variables tested to investigate the NOx emission characteristics fur changing of fuel or air velocity, swirl intensity, and staging ratio of air and fuel in multi-staged burner. In air-staging case, the fuel-rich condition of the primary combustion zone is very helpful to reduce NOx emission and its range is known to be restricted by the increase of carbon monoxide. However, in many cases carbon monoxide level is not too high to be restricted operating condition. So we tried to expand the equivalence ratio range to the richer condition in the primary combustion zone and certificate the function of each burner component and its contribution to the overall NOx production.

Experimental Evaluation of Developed Ultra-low NOx Coal Burner Using Gas in a Bench-scale Single Burner Furnace (Bench-scale 연소로에서 가스 혼소를 통한 초 저 NOx 석탄 버너 개발 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This study developed and tested an ultra-low NOx burner in an 80 kW combustion furnace. The experiment was conducted in an 80 kW single burner combustion furnace with changing the swirl numbers, total equivalence ratios, and primary/secondary oxidizer ratios. In this study, liquefied natural gas (LNG) was used as an auxiliary fuel to significantly reduce NOx production. In a thermal power plant, the amount of NOx generated during coal combustion is about 300 ppm. However, using the burner tested in this study, it was possible to reduce the amount of NOx generated via LNG co-firing to 40 ppm. If the input amount of the primary oxidizer is enough for the gas to be completely combusted and the gas and coal are added simultaneously, the combusted gas forms a high-temperature region at the burner outlet and volatilizes the coal. As a result, the N contained in the devolatilized coal is discharged. Therefore, when the coal is subsequently burned, the amount of NOx produced decreases because there is almost no N remaining in the coal. If a thermal power plant burner is developed based on the results of this study, it is expected that the NOx generation will be significantly lower in the early stage of combustion.

An Experimental Study on the Characteristics of NOx Emission in Reburning Process (재연소 과정의 NOx 발생특성에 관한 실험적 연구)

  • Park, Jong-Il;Ahn, Kook-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Yong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.698-703
    • /
    • 2000
  • The characteristics of NOx emission in reburning process have been experimentally studied. The design point of burner is creative of three distinct reaction zones; a primary flame zone that NOx producted, reburn zone to reduce the primary zone NOx and burnout zone. Liquefied Petroleum Gas(LPG) was used as main and reburn fuels. Process parameters investigated included main/reburn fuel ratio, primary/secondary air ratio, reborn fuel injector position and different designed quarl. The NOx emission characteristic of aerodynamic designed burner relied on reborn fuel ratio and was slightly affected by a reburn fuel injector position and quarl shape.

  • PDF