• Title/Summary/Keyword: Low-spin

Search Result 462, Processing Time 0.022 seconds

Study and Fabrication of Transparent Electrode Film by using Thermal-Roll Imprinted Ag Mesh Pattern and Coated Conductive Polymer (열형-롤 각인으로 형성한 Ag 격자 패턴과 전도성 고분자 코팅을 이용한 투명전극 필름 제작에 관한 연구)

  • Yu, Jong-Su;Jo, Jeong-Dai;Yoon, Seong-Man;Kim, Do-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.11-15
    • /
    • 2010
  • In this study, to fabricate a low-resistance and high optical transparency electrode film, the following steps were performed: the design and manufacture of electroforming stamp, the fabrication of a thermal roll-imprinted polycarbonate (PC) patterned films, the filled low-resistance Ag paste using doctor blade process on patterned PC films and spin coating by conductive polymers. As a result of PC films imprinted line width of $26.69{\pm}2\;{\mu}m$, channel length of $247.57{\pm}2\;{\mu}m$, and pattern depth of $7.54{\pm}0.2\;{\mu}m$. Ag paste to fill part of the patterned film with conductive polymer coating and then the following parameters were obtained: a sheet resistance of $11.1\;{\Omega}/sq$ optical transparency values at a wavelength of 550 nm was 80.31 %.

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

High quality fast growth nano-crystalline Si film synthesized by UHF assisted HF-PECVD

  • Kim, Youn-J.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.306-306
    • /
    • 2010
  • A high density (> $10^{11}\;cm^{-3}$) and low electron temperature (< 2 eV) plasma is produced by using a conventional HF (13.56 MHz) plasma enhanced chemical vapor deposition (PECVD) with an additional ultra high frequency (UHF, 314 MHz) plasma source utilizing two parallel antenna assembly. It is applied for the high rate synthesis of high quality nanocrystalline silicon (nc-Si) films. A high deposition rate of 1.8 nm/s is achieved with a high crystallinity (< 70%), a low spin density (< $3{\times}10^{16}\;cm^{-3}$) and a high light soaking stability (< 1.5). Optical emission spectroscopy measurements reveal emission intensity of $Si^*$ and $SiH^*$, intensity ratio of $H{\alpha}/Si^*$ and $H{\alpha}/SiH^*$ which are closely related to film deposition rate and film crystallinity, respectively. A high flux of precursor and atomic hydrogen which are produced by an additional high excitation frequency is effective for the fast deposition of highly crystallized nc-Si films without additional defects.

  • PDF

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

Study on fabricated RF coil using high-temperature superconductor tape and matching circuit for low field MRI system (고온초전도 선재와 정합회로를 이용한 RF coil 제작에 대한 기초연구)

  • Kim, D.H.;Ko, R.K.;Kang, B.M.;Ha, D.W.;Sohn, M.H.;Mun, C.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • The substantial improvement of the signal-to-noise ratio (SNR) can be achieved with small-size samples or low-field MRI system by high-temperature superconducting(HTS) RF coil. The typical HTS RF coil made of HTS thin film is expensive and is limited the coil geometry to planar surface coil. In this study, commercial Bi-2223 HTS tapes was used as RF coil for a 0.35T permanent MRI system. It has advantages of both much lower cost and easier fabrication over HTS thin film coil. SNR gain of the image obtained from the HTS RF coil over a conventional Cu RF coil at room temperature was about 2.4-fold and 1.9-fold using the spin echo pulse sequence and gradient echo pulse sequence respectively.

The Effect of $ZrO_2-Y_2O_3\;(YSZ)$ Buffer Layer on Layer on Low-Field Magnetoresistance of LSMO Thin Films ($ZrO_2-Y_2O_3\;(YSZ)$ 중간층이 저 자장영역에서의 LSMO 박막의 자기저항 특성에 미치는 영향)

  • 심인보;오영제;최세영
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.306-311
    • /
    • 1999
  • $La_{2/3}Sr_{1/3}MnO_3(LSMO)/YSZ/SiO_2/Si(100)$ polycrystalline thin films were fabricated be chelated sol-gel method The effect of YSZ buffer layer at low field (120 Oe) spin-polarized tunneling magnetotransport (TMR) properties of LSMO thin film was studied at room temperature. Single perovskite LSMO thin films was obtained. The maximum TMR ratio was increased from 0.2 to 0.42 % by the insertion of YSZ buffer. YSZ as diffusion barrier was attributed to the fine microstructure of LSMO thin films and the reduction of dead layer between LSMO and $SiO_2/Si(100)$ interfaces.

  • PDF

A Study on the Material Characteristics of the NiO/ZnO Ultraviolet Sensor Based on Solution Process (용액 공정 기반 NiO/ZnO계 자외선 센서용 재료 특성 연구)

  • Moon, Seong-Cheol;Lee, Ji-Seon;No, Kyeong-Jae;Yang, Seong-Ju;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.508-513
    • /
    • 2017
  • Ultraviolet (UV) photodetectors are used in various industries and fields of research, including optical communication, flame sensing, missile plume detection, astronomical studies, biological sensors, and environmental research. However, general UV detectors that employ Schottky junction diodes and p-n junctions have high fabrication cost and low quantum efficiency. In this study, we investigated the characteristics of materials used to manufacture UV photodetectors in a low-cost solution process that requires easy fabrication of flexible substrates. We fabricated p-type NiO and n-type ZnO substrates with wide band gap by the sol-gel method and compared the characteristics of substrates prepared under different spin-coating and heat-treatment conditions.

Polymer Phosphorescent Light-Emitting Devices Doped with Iridium Complex (이리듐 합성물 기반의 인광 고분자 발광 소자)

  • Kim, Sung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.254-258
    • /
    • 2009
  • We herein report on polymer phosphorescent light-emitting devices doped with iridium complex. The emitting layer of poly(N-vinylcabazole) and tris(2-phenylpyridine)iridium was fabricated by low speed dip-coating of 10, $20{\mu}m$/s. The devices showed stable current increasing leakage current at turn-on voltage. Compared to conventional spin-coating based organic light-emitting devices, the driving voltage by dip-coating observed lower values of 5.8 and 6.7 V at the luminance of 100 Cd/$cm^2$.

The Fabrication and Characteristics of 0-3 PbTiO$_3$/P(VDF/TrFE) Nanocomposite Thin Films for Passive Pyroelectric Infrared Sensors

  • Kwon, Sung-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.73-76
    • /
    • 2004
  • 0-3 PbTiO$_3$/P(VDF/TrFE) nanocomposite thin films for passive pyroelectric infrared sensors were fabricated by a two-step spin coating technique. 65wt% VDF and 35 wt% TrFE was formed into a P(VDF/TrFE) powder. Nano size PbTiO$_3$ powder was used. 0-3 connectivity of PbTiO$_3$/P(VDF/TrFE) composite film was successfully achieved and observed using SEM photography. The dielectric constant and pyroelectric coefficient were measured and compared with P(VDF/TrFE). A very low dielectric constant (13.48 at 1KHz and sufficiently high pyroelectric coefficient (3.101 nC/$\textrm{cm}^2$ㆍk at 5$0^{\circ}C$) were measured. This nanocomposite can be used for a new pyroelectric infrared sensor to achieve better performance.

Nanotribology of PMMA thin film using the AFM (AFM을 이용한 PMMA (Poly Methy1 Methacrylate) 박막의 나노트라이볼로지 연구)

  • 김승현;김용석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.89-92
    • /
    • 2003
  • Nano-scratch tests were performed on PMMA thin films spin-coated on a Si substrate using an atomic force microscopy (AFM) with loads ranging from 10nN to 100nN. At low applied loads, a ridge pattern was formed on the PMMA surface. No wear particles were observed during the pattern-forming mild wear. At high applied loads, severe wear occurred accompanied by wear particles. The film with the highest hardness showed the highest wear resistance. Friction force generated during the Scratching was closely related with surface deformation of the film.

  • PDF