• 제목/요약/키워드: Low-rank matrix recovery

검색결과 3건 처리시간 0.018초

Block Sparse Low-rank Matrix Decomposition based Visual Defect Inspection of Rail Track Surfaces

  • Zhang, Linna;Chen, Shiming;Cen, Yigang;Cen, Yi;Wang, Hengyou;Zeng, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6043-6062
    • /
    • 2019
  • Low-rank matrix decomposition has shown its capability in many applications such as image in-painting, de-noising, background reconstruction and defect detection etc. In this paper, we consider the texture background of rail track images and the sparse foreground of the defects to construct a low-rank matrix decomposition model with block sparsity for defect inspection of rail tracks, which jointly minimizes the nuclear norm and the 2-1 norm. Similar to ADM, an alternative method is proposed in this study to solve the optimization problem. After image decomposition, the defect areas in the resulting low-rank image will form dark stripes that horizontally cross the entire image, indicating the preciselocations of the defects. Finally, a two-stage defect extraction method is proposed to locate the defect areas. The experimental results of the two datasets show that our algorithm achieved better performance compared with other methods.

낮은 계수 행렬의 Compressed Sensing 복원 기법 (Compressed Sensing of Low-Rank Matrices: A Brief Survey on Efficient Algorithms)

  • 이기륭;예종철
    • 대한전자공학회논문지SP
    • /
    • 제46권5호
    • /
    • pp.15-24
    • /
    • 2009
  • Compressed sensing은 소수의 선형 관측으로부터 sparse 신호를 복원하는 문제를 언급하고 있다. 최근 벡터 경우에서의 성공적인 연구 결과가 행렬의 경우로 확장되었다. Low-rank 행렬의 compressed sensing은 ill-posed inverse problem을 low-rank 정보를 이용하여 해결한다. 본 문제는 rank 최소화 혹은 low-rank 근사의 형태로 나타내질 수 있다. 본 논문에서는 최근 제안된 여러 가지 효율적인 알고리즘에 대한 survey를 제공한다.

Why Gabor Frames? Two Fundamental Measures of Coherence and Their Role in Model Selection

  • Bajwa, Waheed U.;Calderbank, Robert;Jafarpour, Sina
    • Journal of Communications and Networks
    • /
    • 제12권4호
    • /
    • pp.289-307
    • /
    • 2010
  • The problem of model selection arises in a number of contexts, such as subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper studies non-asymptotic model selection for the general case of arbitrary (random or deterministic) design matrices and arbitrary nonzero entries of the signal. In this regard, it generalizes the notion of incoherence in the existing literature on model selection and introduces two fundamental measures of coherence-termed as the worst-case coherence and the average coherence-among the columns of a design matrix. It utilizes these two measures of coherence to provide an in-depth analysis of a simple, model-order agnostic one-step thresholding (OST) algorithm for model selection and proves that OST is feasible for exact as well as partial model selection as long as the design matrix obeys an easily verifiable property, which is termed as the coherence property. One of the key insights offered by the ensuing analysis in this regard is that OST can successfully carry out model selection even when methods based on convex optimization such as the lasso fail due to the rank deficiency of the submatrices of the design matrix. In addition, the paper establishes that if the design matrix has reasonably small worst-case and average coherence then OST performs near-optimally when either (i) the energy of any nonzero entry of the signal is close to the average signal energy per nonzero entry or (ii) the signal-to-noise ratio in the measurement system is not too high. Finally, two other key contributions of the paper are that (i) it provides bounds on the average coherence of Gaussian matrices and Gabor frames, and (ii) it extends the results on model selection using OST to low-complexity, model-order agnostic recovery of sparse signals with arbitrary nonzero entries. In particular, this part of the analysis in the paper implies that an Alltop Gabor frame together with OST can successfully carry out model selection and recovery of sparse signals irrespective of the phases of the nonzero entries even if the number of nonzero entries scales almost linearly with the number of rows of the Alltop Gabor frame.