• Title/Summary/Keyword: Low-profile design

Search Result 234, Processing Time 0.029 seconds

Development of Improved 5th Order Motion Profile for Low Vibration and High Speed (저진동, 고속특성을 가지는 개선된 5차 모션 프로파일의 설계)

  • So, Byeong-Kwan;Tae, Won-Hyeong;Kim, Jung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1110-1118
    • /
    • 2012
  • In this study, for reducing the residual vibration in high speed motion control stage, an improved 5th order polynomial motion profile was developed. When a stage is moving, the current through the motor coils has the same profile of input motion profile of acceleration, therefore the characteristics of the acceleration input profile directly affect on the performance of the amplifier that includes the current control loop. Commonly low cost amplifier and motor has a narrow current control bandwidth, therefore the proposed algorithm was designed based on this practical constraint. Simulation and experimental results showed that the proposed algorithm clearly has low residual vibration characteristics than conventional 5th order polynomial motion profile on the same drive condition.

Development of rotor profile design technology for improving the screw compressor performance (공기압축기 성능향상을 위한 로터 프로파일 설계기술 개발 연구)

  • Kim, Tae-Yoon;Lee, Jae-Young;Lee, Dong-Kyun;Kim, Youn-Jea
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.585-592
    • /
    • 2009
  • The performance of screw compressor depends on lots of design parameters of rotor profile, such as length of seal line, wrap angle, blow hole, suction and discharge port size, number of rotor lobe, etc. The optimum rotor profile makes it possible to increase the compression efficiency with low energy consumption, and to minimize the loss of power. In this research, a new rotor profile design and performance analysis are done by computer simulation. It is expected that the volumetric efficiency is improved because the internal leakage is reduced due to the minimization of blow hole and clearance, and the stiffness of rotors is increased due to the reduction of length to diameter ratio. Also, the specific power consumption will be secured for use ranging from low to high operation speed.

  • PDF

Design and Implementation of AC-PDP Power Supply using Planar Magnetic Components (박형 자기소자를 이용한 AC-PDP 전원회로의 설계 및 제작)

  • Kim Myoungsoo;Choi Byungcho
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.677-681
    • /
    • 2004
  • This paper presents the design and implementation of a low-profile power supply developed for AC-PDP application systems. In the proposed power supply, planar magnetics and SMD devices are integrated into advanced power conversion techniques to implement a low-profile power supply applicable to most AC-PDP application systems. Engineering details on the design and fabrication of planar magnetic components are presented. The performance of the prototype power supply is also demonstrated to validate the application potentials of the proposed power supply.

  • PDF

Design and analysis of low velocity impact on thermoplastic hat section with curvilinear profile

  • Gaur, Kumresh K;Dwivedi, Mayank;Bhatnagar, Naresh
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.65-78
    • /
    • 2017
  • A hat section was designed and developed for maximum impact energy absorption and/or transmission under low velocity impact. Towards this, different hat sections, having material properties of thermoplastic, were modeled and investigated numerically using finite element analysis (FEA) in the range of 20-50 J impact energy. In the study it was experienced that the design configuration of hat section with curvilinear profile (HSCP) was excellent in energy attenuation capacity and for even distribution of maximum impact force around and along the hat section under low velocity impact loading. To validate the numerical findings, polypropylene copolymer (Co-PP) HSCP and low density polyethylene (LDPE) HSCP were developed and evaluated experimentally in the said impact energy range. A correlation was established between FEA and experimental test results, thereby, validating a numerical model to predict results for other thermoplastic materials under given range of impact energy. The LDPE HSCP exhibited better performance as compared to Co-PP HSCP in the said range of impact energy. The findings of this study will enable the engineers and technologists to design and develop low velocity impact resistance devices for various applications including devices to protect bone joints.

A Low-Profile DC-To-DC Converter for Sustain Driving Circuits of AC PDP Application Systems (저소비전력 PDP 구동을 위한 고효율 박형 전원회로 개발)

  • Lee S.W.;Choi B.C;Lee K.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.247-250
    • /
    • 2003
  • The current paper presents the design and implementation of a low-profile dc-to-dc converter developed as a power supply for the sustain driving: circuit inside large-area wall-mount ac PDP application systems. Details on the design and implementation of a 500 W prototype dc-to-dc converter, miniaturized within a 230 mm$\times$ 130 mm area with a thickness of 25 mm while still achieving a 95 $\%$ conversion efficiency, are presented to demonstrate the feasibility and application potentials of the proposed low-profile dc -to-dc converters.

  • PDF

A Low-Profile DC-To-DC Converter for Sustain Driving Circuits of AC PDP Application Systems

  • Lee, Sang-Won;Choi, Byung-Cho;Lee, Ki-Jo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.333-336
    • /
    • 2003
  • The current paper presents the design and implementation of a low-profile dc-to-dc converter developed as a power supply for the sustain driving circuit inside large-area wall-mount ac PDP application systems. Details on the design and implementation of a 500 W prototype dc-to-dc converter, miniaturized within a 230 $mm{\times}130$ mm area with a thickness of 25 mm while still achieving a 95 % conversion efficiency, are presented to demonstrate the feasibility and application potentials of the proposed low-profile dc-to-dc converter.

  • PDF

Design of Railway Vehicle Wheel Profile Suitable for Dual-rail Profile (듀얼 레일 형상에 적합한 철도차량의 차륜 형상 설계)

  • Byon, Sung-Kwang;Lee, Dong-Hyeong;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.30-37
    • /
    • 2017
  • When a wheel profile of a train-tram is designed, both train and tram tracks should be considered. This study designed a wheel profile that enables high-speed driving(200km/h) on the train track and low speed driving on the tram track with multiple sharp curves. The study used the approximation optimization method to reduce cost and time, used the sequential quadratic programming method as the optimized algorithm, and the central composite design and response surface method as an approximate model. The optimized wheel shape based on this approximation optimization method reduced wear of the initial wheel showed a better performance in terms of derailment and lateral force.

Design of a Modified Alford Loop Antenna for On-Body Devices (인체 부착형 기기를 고려한 변형된 Alford 루프 안테나 설계)

  • Park, Joongki;Lee, Juneseok;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • In this paper, a modified Alford loop antenna for on-body communication system is proposed. The proposed antenna operating in the ISM band is designed with consideration of human body effect. One of advantages of the Alford loop antenna structure is low-profile, however the Alford loop antenna is not suitable for on-body devices since it does not have a ground plane for other electronic part of on-body system and requires balanced feeding structure. To be embedded on on-body devices, the proposed antenna is design with the unbalanced feed structure and ground. The performance of the proposed antenna is simulated and measured when it is placed on the human body phantom to consider the effect of the human body. The proposed antenna a 10 dB return loss bandwidth over the ISM band and monopole-like radiation pattern with low-profile. The antenna has the surface of appropriate for on-body communication environment.

Small Antennas (소형 안테나)

  • Kim, Ki-Chai
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.79-83
    • /
    • 1992
  • The demand for small and low-profile antennas has become quite strong, especially in mobile communications. This article presents an brief introduction to the fundsmental characteristics, design, and measurement of typical small antennas and low-profile antennas.

  • PDF

Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set (핀 휠을 구비한 외륜형 선회베어링의 면압강도)

  • Kwon, Soon-man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.231-237
    • /
    • 2015
  • The pin-gear drive is a special form of fixed-axle gear mechanism. A large wheel with cylindrical pin teeth is called a pinwheel. As pinwheels are rounded, they have a simple structure, easy processing, low cost, and easy overhaul compared with general gears. They are also suitable for low-speed, heavy-duty mechanical transmission and for occasions with more dust, poor lubrication, etc. This paper introduces a novel slewing ring bearing with an external pinwheel gear set (e-PGS). First, we consider the exact cam pinion profile of the e-PGS with the introduction of a profile shift. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of the e-PGS can be lowered significantly by increasing the profile shift coefficient.