• Title/Summary/Keyword: Low-pressure plasma

Search Result 478, Processing Time 0.033 seconds

Characteristics of the Low Pressure Plasma

  • Bae, In-Sik;Na, Byeong-Geun;Seol, Yu-Bin;Song, Ho-Hyeon;Yu, Sin-Jae;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.235.2-235.2
    • /
    • 2014
  • Plasma hardly grows in low pressure because of lack of collision. Especially, in extremely low pressure like 1 mTorr, the experiment scale is far larger than mean free path therefore plasma is hardly generated in such low pressure. But low pressure plasma has useful properties like low damage or fine sputtering process because it has typically low electron density. In here, thermal electron is used to make breakdown in low pressure easily and cylindrical geometry is used to help discharge easily. And we changed magnetic field strength to control electron density or temperature. In low pressure, density and temperature behavior is very interesting so its characteristics are examined here.

  • PDF

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Effects of Plasma Spray Conditions on Photoelectric Properties of Plasma Sprayed $TiO_2$ Semiconductor ($TiO_2$ 반도체 용사피막의 광전극 특성에 미치는 용사조건의 영향)

  • 박정식;박경채
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.94-101
    • /
    • 1994
  • In this study, plasma spraying has been used to produce $TiO_2$ polycrystalline coatings from $TiO_2$ powders. The physical and chemical properties of plasma sprayed $TiO_2$ coatings depend greatly on plasma spraying conditions. The electrical resistivity, oxygen concentration, photocurrent and crystal structure of plasma sprayed $TiO_2$ coating has been studied. The results are as follows: 1. The oxygen loss and electrical conductivity of $TiO_2$ plasma sprayed coatings increased by low pressure and high amount of auxiliary gas, hydrogen in plasma spraying. 2. Oxygen loss increase electrical conductivity, and decrease photocurrent of $TiO_2$ plasma sprayed coatings. 3. Photocurrent of $TiO_2$ plasma sprayed coatings manufactured in atmospheric pressure is higher than that of low pressure.

  • PDF

Atmospheric Pressure Plasma Research Activity in Korea

  • Uhm, Han S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.367-377
    • /
    • 2001
  • Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionization of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pumps, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasmas are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for $21^{st}$ / century industries. This technological research will play a central role in material processing, environmental and energy production industries.

  • PDF

Color Depth of Polyamide Fabrics Pretreated with Low-Temperature Plasma under Atmospheric Pressure (상압 저온 플라즈마 전처리한 폴리아미드계 직물의 색농도)

  • 이문철
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.134-138
    • /
    • 1993
  • Wool, silk and nylon 6 fabrics were treated with low-temperature plasma under atmospheric pressure of acetone/argon or helium/argon for 30 and 180 sec, and then dyed with leveling type acid dye, C.I. Acid Red 18 and milling type acid dye, C.I. Acid Blue 83. In spite of short time of the plasma treatment for thirty seconds, the color depth of wool fabrics was increased remarkably with both of the plasma gases, aceton/argon or helium/argon and with the kinds of dyes i.e., levelin type or milling type. But the atmosperic low-temperature plasmas did not increase the depth of silk and nylon 6 fabrics dyed with both of the acid dyes regardless of the teated time and plasma gases. It seems that low-temperature plasma by atmospheric-pressure discharge is effective for improvement of dyeing of wools as is the same way with the low-temperature plasma by glow discharge. The kinds of plasma gases and treated time did not influnce the depth of wool fabric pretreted with the atmosperic low-temperature plasmas.

  • PDF

다양한 Plasma 처리 방법에 의존하는 PDP Panel 내 MgO Layer의 Outgassing 특성에 관한 연구

  • 이준희;황현기;정창현;이영준;염근영
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.54-54
    • /
    • 2003
  • MgO layer는 POP 패빌 내 유전증을 이온의 스퍼터링으로부터 보호하여 주며, 또한 높은 이차 전자 밤출 계수의 특성을 가지고 있어 구동 및 유지 전압을 낮춰 주는 역할을 한다. 그러나. MgO layer는 $H_20,{\;}CO_2,{\;}N_2,{\;}0_2$ 그리고 $H_2$와 같은 불순물 들을 쉽게 를착하는 단점이 있어, PDP의 특성 및 수명 단축에 영향을 줄 수 있다. 따라서, 본 연구에서는 atmospheric pressure plasma cleaning 과 low pressure i inductively coupled plasma (ICP) cleaning 처리에 의하여, 보호층으로 사용이 되는 MgO layer의 outgassing 특성을 조사하고자 한다. plasma cleaning에 의한 MgO layer 표면의 roughness와 불순물의 변화를 알아보기 위 하여 atomic force microscopy(AFM)과 x-ray p photoelectron spectroscopy(XPS)를 이용하여 측정 하였다. 또한, outgassing의 특성을 분석하기 위하여 MgO layer를 $400^{\circ}C$ 까지 온도를 가하여 온도에 따른 outgassing의 특성을 quadrupole mass spectrometer(QMS)를 이용하여 알아보았다. atmospheric pressure plasma cleaning 에서는 $He/O_2/Ar/N_2$의 gas를 사용하였으며, low pressure ICP cleaning 에 서는 Ar의 gas를 사용하였다. atmospheric pressure plasma cleaning는 low pressure ICP C cleaning과 비교해 더 낮은 outgassing을 관잘 할 수 있었으나. MgO 표면의 roughness는 low pressure ICP cleaning 후 더 낮은 것을 알 수 있었다. 또한 $He/O_2/Ar/N_2$의 gas를 사용 한 atmospheric pressure plasma cleaning 과 $Ar/O_2$의 gas를 사용한 ICP cleaning에서 이 차전자방출계수(SEEC)가 약 1.5~2.5배 증가된 것을 알 수 있었다.

  • PDF

Gas and Magenetic Field Effect to Low Pressure Plasma

  • Bae, In-Sik;Na, Byeong-Geun;Seol, Yu-Bin;Yu, Sin-Jae;Kim, Jeong-Hyeong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.557-557
    • /
    • 2013
  • Plasma hardly grows in lowpressure because of lack of collision. But low pressure plasma has useful properties because it has typically low electron density. In here, thermal electron is used to make breakdown in low pressure easily. We changed magnetic field strength and gas to control electron density or temperature. IV characteristic and electron density of the discharge are examined and the characteristic of the discharge in presence of magnetic field is also examined. Results showed that depending on the ionization cross section of the gas, electron density is changed and proper strength of magnetic field is required for high electron density.

  • PDF

The Effects of the Reduced Pressure on DC Thermal Plasma (감압 분위기가 직류 열 플라즈마에 미치는 영항)

  • 김원규;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1227-1234
    • /
    • 1990
  • This study is to figure out the properties of the DC thermal plasma at low pressure. For this purpose, a temperature measurement system utilizing emission spectroscopy has been set up and its measurement method and results have been described. At low pressure, the plasma has shown drastic changes in its appearance. The discharge characteristics under low pressure have been measured and analyzed. The temperature of thermal plasma generated in this research has been ranged from 10, 000 K to 15, 000 K. Temperature has been observed to increase with the flow rate and magnetic field strength. The temperature characteristics at low pressure has been observed to coincide with the reported results.

  • PDF

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.

The Effect of Etching on Low-stress Mechanical Properties of Polypropylene Fabrics under Helium/Oxygen Atmospheric Pressure Plasma

  • Hwang, Yoon J.;An, Jae Sang;McCord, Marian G.;Park, Shin Woong;Kang, Bok Choon
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.145-150
    • /
    • 2003
  • Polypropylene nonwoven fabrics were exposed to He/$O_2$ atmospheric pressure glow discharge plasma. Surface chemical analysis and contact angle measurement revealed the surface oxidation by formation of new functional groups after plasma treatment. Weight loss (%) measurement and scanning electron microscopy analysis showed a significant plasma etching effect. It was investigated in low-stress mechanical properties of the fabrics using Kawabata Evaluation System (KES-FB). The surface morphology change by plasma treatment increased surface friction due to an enhancement of fiber-to-fiber friction, resulting in change of other low-stress mechanical properties of fabric.