• 제목/요약/키워드: Low-pressure Dual-fuel engine

검색결과 19건 처리시간 0.022초

바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향 (Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel)

  • 유경현
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

터보팬 엔진에서 터빈 냉각이 성능에 미치는 영향에 대한 수치적 해석 (Parametric Cycle Analysis of a Turbofan Engine with Turbine Cooling)

  • 황진석;문희장;구자예
    • 한국항공운항학회지
    • /
    • 제14권1호
    • /
    • pp.15-21
    • /
    • 2006
  • Parametric cycle analysis of a dual-spool, mixed exhaust turbofan engine with turbine blade cooling were described to investigate the effect of turbine blade cooling on the engine performance such as specific thrust and thrust specific fuel consumption. Coolant of low pressure turbine triggers high engine performance loss and cooling effect loss in high pressure turbine. Therefore low pressure turbine coolant should be much more considered for effective design.

  • PDF

배기구성요소가 SI기관의 성능에 미치는 영향 (The Effect of Exhaust System Components on the Sl Engine Performance)

  • 박경석;박세종;손성만
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.192-198
    • /
    • 2005
  • Recently, Automobile manufacturers regarding stability, economic environmental-friendly problems by the development of automobile. This reason is increasingly strict environmental regulations to lower fuel consumption and reduce emission. Designing more efficient and low emission control exhaust system results in more efficient Performance, reduced back Pressure and higher convert efficiency. Also to reduce the noise and the vibration of the automobile. According to develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption rate, higher conversion efficiency demand information of pressure fraction and heat characteristics. To be able to determine these factor fur we experiment on each case of exhaust system unit. In this study, how back pressure is distributed in flow-through in exhaust system and how to design exhaust system flexibleness, efficiency, lower back pressure and optimal performance. This study furnish basic data for engineers, technicians.

과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구 (Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass)

  • 박정수;이교승;송순호;전광민
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.

LPG 기관의 수소 분사비율에 따른 냉간시동시 미연탄화수소 배출 특성에 관한 실험적 연구 (An Experimental Study on Hydrocarbon Emission Characteristics of Hydrogen Enriched LPG Fuel in a LPG Engine at Cold Start)

  • 이영재;김형근;방태석;이재웅;조용석
    • 한국수소및신에너지학회논문집
    • /
    • 제26권4호
    • /
    • pp.363-368
    • /
    • 2015
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in a LPG engine. An experimental study was carried out to obtain fundamental data for the emit HC emission characteristics at cold start of pre-mixed LPG and hydrogen in a LPG engine with various fractions of hydrogen-LPG blends. To maintain equal volume ratio of fuel blend, the amount of HC was decreased as hydrogen was gradually added. The results showed that as hydrogen increases, in-cylinder pressure increased. Also emission of unburned hydrocarbon (HC) is sharply decreased.

CNG 혼소율 변화에 따른 디젤엔진의 성능 및 연소 특성에 관한 연구 (A Study on the Performance and Combustion Characteristics with CNG Substitution Rate in a Diesel Engine)

  • 장형준;이선엽;김창기;조정권;임종한;윤준규
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.700-707
    • /
    • 2017
  • 전 세계적으로 천연가스 시장에서는 천연가스의 저열량화 추세로 뚜렷하게 변화되고 있다. 이러한 추세는 국내의 천연가스 열량기준에 변화를 가져왔으며, 낮은 열량의 천연가스 도입으로 인해 현재 사용되고 있는 가스기기의 성능에도 변화가 있을 것으로 예측된다. 따라서 본 연구에서는 혼소엔진의 연소특성을 파악하기 위해 CNG 혼소율 변화를 이용하여 열효율, 도시평균유효압력 변동계수 및 열방출 특성을 고찰하였다. CNG 혼소율은 투입되는 연료의 총합 대비 공급되는 천연가스연료의 에너지로 계산하여 천연가스연료가 디젤연료를 대체하는 비율로 정의하였다. 엔진 실험조건으로는 공급되는 천연가스의 발열량은 $10,400kcal/Nm^3$이며, $1800rpm/500N{\cdot}m$의 엔진 운전조건에서 디젤연료의 분사시기는 BTDC $16^{\circ}CA$, 분사압력은 85 MPa로 설정하여 엔진의 성능 및 연소 실험을 진행하였다. 엔진 실험결과로 CNG 혼소율이 변화함에 따라 공급되는 디젤 연료량 역시 변화하고, CNG 혼소율이 증가할수록 디젤 연료량이 감소함으로써 점화에너지가 줄어들어 점화지연기간이 길어지는 연소특성을 나타내며, 이로 인해 엔진의 열효율과 출력도 감소하는 경향을 보였다. 그러나 연소안정성은 5% 미만으로 안정적인 엔진의 연소상태를 보여 실험의 신뢰성을 확보할 수 있었다.

6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석 (Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine)

  • 이선엽;이석환;김창기;이정우
    • 한국가스학회지
    • /
    • 제24권6호
    • /
    • pp.1-10
    • /
    • 2020
  • 반응성 조정 압축착화 (Reactivity Controlled Compression Ignition, RCCI) 연소는 착화원인 디젤 연료를 압축 행정 중 이른 시점에 미리 분사하여, 공기와 미리 섞여 들어온 천연가스 연료뿐만 아니라 디젤 연료 자체도 미리 연소 전에 공기와 혼합하여 착화를 이루는 전체 예혼합 혼소(Dual-fuel combustion) 방식의 일종이다. 따라서 기존의 혼소 방식 중에서도 RCCI 연소는 질소산화물(Nitrogen Oxides, NOx) 및 매연(Smoke)을 획기적으로 줄일 수 있고, 또한 높은 열효율을 유지할 수 있는 장점을 지니고 있다. 특히 연소 중 NOx의 발생은 연소 온도와 국부적인 당량비에 관계된 상황에서 당량비를 낮추기 위해 예혼합율을 높이는 시도뿐만 아니라, 연소 온도 감소를 위한 배기재순환(Exhuast Gas Recirculation, EGR)을 적용하는 것이 효과적이다. 그러나 배기재순환은 대개의 경우 터보차저의 압축기 전단에서 추출하는 HP-EGR(High Pressure-EGR) 방식을 적용하는 경우가 많으므로, EGR율을 높일 경우 터빈으로 공급되는 배기의 양이 줄어 배기 엔탈피 감소로 인해 과급이 줄어드는 악영향을 초래할 수 있다. 따라서 본 연구에서는 서로 다른 두 운전조건에서 천연가스-디젤 RCCI 연소를 시행할 때, EGR율 변화에 따른 엔진 시스템의 제동 출력 및 열효율의 변화에 대하여 실험적으로 분석하였다. 실험 조건은 1,200 rpm/29 kW 수준의 조건과 1,800 rpm/90 kW 이하 조건에서 수행하였으며 NOx와 smoke의 배출조건은 Tier-4 final 배기규제를 기준으로 삼았으며 엔진의 내구성을 고려하여 최고 연소압력은 160 bar를 넘지 않게 제어하였다. 그 결과 1,200 rpm/29 kW 조건에서는 EGR율을 4에서 30 %로 높이더라도 출력 및 열효율의 변화는 미미하였으나, 1,800 rpm 조건에서는 EGR율을 4에서 28 %로 증가할 경우 최대 과급 압력이 2.3에서 1.8 bar로, 최고 출력은 90에서 65 kW로, 열효율은 37에서 33 %로 감소함을 알 수 있었다. 따라서 효과적인 EGR공급을 위해서는 현재 압축기 전단에서 추출하는 EGR을 후단에서 추출하는 LP-EGR (Low Pressure EGR) 시스템이 효과적일 수 있음을 시사한다.

폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계 (A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System)

  • 배석정;허형석;박정상;이홍열;김찬중
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가 (Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery)

  • 허형석;배석정;이동혁;이헌균;김태진
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.