• Title/Summary/Keyword: Low-power wireless communication

Search Result 516, Processing Time 0.033 seconds

The MS Card Data Transfer System using Bluetooth Protocol (블루투스를 이용한 마그네틱 카드 정보 전송 시스템)

  • 강형원;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.435-438
    • /
    • 2003
  • The MS card data transfer system using blue-tooth protocol ran communicate the MS card data wirelessly and does not take an extra communication expense which is a weakness point of existing wireless communication system. This Blue-tooth system, which has excellent security and no extra communication expense, can efficiently communicate data of the place ,where can be solved with small scale wireless network, such as the theme-park or gasoline-station. Existing wireless communication system compose network using wireless-LAN protocol which has extra communication expense, or with RF protocol which has poor security. But this system suitable for LAN because it has not extra communication expense and it has excellent security cause frequency-hopping of Blue-tooth protocol. The MS card data transfer system using blue-tooth protocol has low power, high performance RISC processor and large scale 16-gray graphic LCD which is suitable for portable unit. The MS card data transfer system can efficiently control depot for a long time because it has low power, excellent security and no extra communication expense.

  • PDF

Improvement of Electromagnetic Shielding Structure for Reduction of the Leakage Magnetic Field in WPT System (WPT 시스템의 누설자계 감소를 위한 전자파 차폐구조 개선)

  • Kim, Jongchan;Lee, Seungwoo;Kang, Byeong-Nam;Hong, Ic-Pyo;Cho, In-Kui;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • In this paper, we propose an improved magnetic field shielding structure to reducing the magnetic field generated in the wireless power transfer system operating at a low frequency band. The proposed structure consists of the magnetic material and the conductive material, magnetic field cancelling effect for power transfer is minimized while improving the leakage magnetic field cancelling effect by optimizing the various design parameters in the proposed structure. We analyzed and verified the efficiency of the wireless power transfer system and the reduction effect of the leakage magnetic field through computer simulation and measurement. Analysis results show that power transfer efficiency of the wireless power transfer system utilizing the proposed structure is 77 %, which is maintained at the conventional power transfer efficiency. In addition, compared with the structure maintaining high power transfer efficiency, leakage magnetic field strength is reduced to 29~37 % at the nearest point.

CMOS Front-End for a 5 GHz Wireless LAN Receiver (5 GHz 무선랜용 수신기의 설계)

  • Lee, Hye-Young;Yu, Sang-Dae;Lee, Ju-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.894-897
    • /
    • 2003
  • Recently, the rapid growth of mobile radio system has led to an increasing demand of low-cost high performance communication IC's. In this paper, we have designed RF front end for wireless LAN receiver employ zero-IF architecture. A low-noise amplifier (LNA) and double-balanced mixer is included in a front end. The zero-IF architecture is easy to integrate and good for low power consumption, so that is coincided to requirement of wireless LAN. But the zero-IF architecture has a serious problem of large offset. Image-reject mixer is a good structure to solve offset problem. Using offset compensation circuit is good structure, too. The front end is implemented in 0.25 ${\mu}m$ CMOS technology. The front end has a noise figure of 5.6 dB, a power consumption of 16 mW and total gain of 22 dB.

  • PDF

Human Motion Tracking With Wireless Wearable Sensor Network: Experience and Lessons

  • Chen, Jianxin;Zhou, Liang;Zhang, Yun;Ferreiro, David Fondo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.998-1013
    • /
    • 2013
  • Wireless wearable sensor networks have emerged as a promising technique for human motion tracking due to the flexibility and scalability. In such system several wireless sensor nodes being attached to human limb construct a wearable sensor network, where each sensor node including MEMS sensors (such as 3-axis accelerometer, 3-axis magnetometer and 3-axis gyroscope) monitors the limb orientation and transmits these information to the base station for reconstruction via low-power wireless communication technique. Due to the energy constraint, the high fidelity requirement for real time rendering of human motion and tiny operating system embedded in each sensor node adds more challenges for the system implementation. In this paper, we discuss such challenges and experiences in detail during the implementation of such system with wireless wearable sensor network which includes COTS wireless sensor nodes (Imote 2) and uses TinyOS 1.x in each sensor node. Since our system uses the COTS sensor nodes and popular tiny operating system, it might be helpful for further exploration in such field.

Ad-hoc home network system using wireless sensor network technology (무선 센서네트워크기술을 활용한 Ad-hoc 홈 네트워크시스템)

  • Shin, Kwang-Sig;Kwon, Joon-Dal;Lee, Young-Dong;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.142-149
    • /
    • 2007
  • Wireless sensor network technology is an emerging technology consisting of small, low power, and low cost devices that integrate limited computation, sensing, and radio communication capabilities. An ad-hoc home network system based embedded system for home environment monitoring was fabricated and tested. The wireless sensor node consists of a MCU, RF transceiver and sensors (temperature, humidity and light). Wireless sensor nodes run application software for data sampling and wireless communication, that was developed using 'nesC language' which runs on TinyOS. In our tests, acquired sensors data were monitored on 6.4" TFT-LCD of base-station through IEEE802.15.4 standard wireless communication. Also, the sensor data can be monitored by client user at the terminal PC to monitor environmental status of home in real time.

Development of wireless wind chill temperature measurement system (무선 체감온도 측정 시스템 개발)

  • Kim, Hyung-Pyo;Kim, Jin-Gyu;Sohn, Kyung-Rak
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.245-250
    • /
    • 2009
  • The paper presents the wireless wind chill temperature measurement system that is composed of IEEE 802.15.4 standard wireless communication devices, hot film anemometer and serial communication temperature sensor. It's sometimes very difficult for a person, who lives in a high-rise apartment, to see the outside wind chill temperature due to harsh outside weather. The wind chill temperature is calibrated from an air velocity and air temperature. IEEE 802.15.4 standard wireless communication is ZigBee compatible, and consumes low power in communication. Under the air temperature of 5 $^{\circ}C$ and air velocity ranging from 0 to 50 km/h, the experimental result of wind chill temperature shows good accuracy within 5%.

A study on Improvement of Conversion Efficiency of Rectifying circuit for Wireless Power Transmission (무선전력전송용 정류회로의 변환효율 개선에 관한 연구)

  • Park, Dong-Kook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.655-660
    • /
    • 2010
  • This paper examines RF-to-DC conversion efficiency of rectifying circuit for wireless power transmission. The rectifying circuit consists of low pass filter, diode circuits and dc pass filter. All these components may be effect on the conversion efficiency. Using the simulation, we study these components how to effect on the conversion efficiency. On the basis of the simulation results, the 912MHz rectifying circuit with 50% efficiency at low input power such as 0dBm is fabricated and its characteristics are measured.

Low-power wireless communication System for Biosignal transmission (생체신호 무선 송수신을 위한 소형,저전력 통신시스템 개발)

  • Lee, Kang-Hwi;Lee, Jeong-Whan;Kim, Kyeong-Seop;Kim, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.370-372
    • /
    • 2005
  • Inconveniences which might arise in transmitting measured biological data based on cable protocols generally are recognized critical points in tele-monitoring environment and also restrict the mobility of the user. a. Especially, activity monitoring which is importantly recognized as a core parameter in ubiquitous healthcare arena and weight management, pervasive and wireless measuring technology is most needed. In this paper, we would like to suggest lower power, miniaturized communication system in order to solve the above problems. The suggested system is powered by small coin-size battery. Also, The suggested system is compared with a blue-tooth module which is generally available in the commercial market. Even though, the suggested system didn't have higher transmission rate, its low power consumption make the suggested system would be feasible in ubiquitous monitoring of biological signals in ubiquitous healthcare arena.

  • PDF

Low-Power Receiver Circuit for Wireless Communication System

  • Morijiri, Keiji;Yazaki, Toru;Yamamoto, Hiroya;Hyogo, Akira;Sekine, Keitaro
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1192-1195
    • /
    • 2002
  • In this paper, we propose Low-Power Receiver circuits for a wireless communication system using ASK signal. Their structures are suitable for low supply current. The proposed circuits are designed and simulated by Spectre using 0.8m CMOS process parameters, and operate with supply current below 1.5${\mu}\textrm{A}$.

  • PDF

An Overview of Peak-to-Average Power Ratio Reduction Schemes for OFDM Signals

  • Lim, Dae-Woon;Heo, Seok-Joong;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • Orthogonal frequency division multiplexing (OFDM) has been adopted as a standard for various high data rate wireless communication systems due to the spectral bandwidth efficiency, robustness to frequency selective fading channels, etc. However, implementation of the OFDM system entails several difficulties. One of the major drawbacks is the high peak-to-average power ratio (PAPR), which results in intercarrier interference, high out-of-band radiation, and bit error rate performance degradation, mainly due to the nonlinearity of the high power amplifier. This paper reviews the conventional PAPR reduction schemes and their modifications for achieving the low computational complexity required for practical implementation in wireless communication systems.