• Title/Summary/Keyword: Low-power transceiver

Search Result 118, Processing Time 0.024 seconds

Design and Fabrication of RF evaluation board for 900MHz (900MHz대역 수신기용 RF 특성평가보드의 설계 및 제작)

  • 이규복;박현식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • A single RF transceiver evaluation board have been developed for the purpose of application to the 900MHz band transceiver contained RF-IC chip And environment test was evaluated. The RF-IC chipset includes LNA(Low Noise Amplifier), down-conversion mixer, AGC(Automatic Gain Controller), switched capacitor filter and down sampling mixer. The RF evaluation board for the testing of chipset contained various external matching circuits, filters such as RF/IF SAW(Surface Acoustic Wave) filter and duplexer and power supply circuits. With the range of 2.7~3.3V the operated chip revealed moderate power consumption of 42mA. The chip was well operated at the receiving frequency of 925~960MHz. Measurement result is similar to general RF receiving specification of the 900MHz digital mobile phone.

  • PDF

Transceiver Module for W-band Compact Radar (W-band 초소형 레이다용 송수신모듈)

  • Kim, Young-Gon;An, Se-Hwan;Park, Chang-Hyun;Kwon, Jun-Beom;Song, Sun-Ki;Yong, Myung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.27-32
    • /
    • 2018
  • In this paper, W-band transceiver module for compact radar has been designed and fabricated. Utilizing proposed microstrip-to-waveguide transition, the error between design and implementation is reduced. The proposed transition provides less than 1 dB insertion loss per transition and reliability for fabrication. In order to apply compact radar with dual-polarized monopulse directly, W-band transmitter with 28 dBm output power is designed and developed. Also, 6 channels of receiver module with low noise figure 13.5 dB and maximum 17 dBm input P1dB is developed. Proposed W-band transceiver module is expected compact radar application for dual-polarized monopulse signal processing system.

Design method of stable RF power amplifiers using 3dB coupled line (3dB coupled line을 이용한 안정한 RF전력증폭기 설계방법)

  • 김선욱;강원태;강충구;장익수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.24-31
    • /
    • 1997
  • A new design method of stable RF power amplifier using 3dB coupled line is proposed in this thiesis. The proposed method of broadband matching consist of resistive matching circuits at low frequency and lossless matching circuits at microwave band. This design method increase the stability of an amplifier and is suitable for interstage matching. When high power amplifier is designed using this method for PCS base transceiver station, the measured resutls show thst the gain of 18.5dB, and 9W (39.5dBm) output power. We use motorola's MRF6401 for medium power and MRF 6402 for large power and cascaded them.

  • PDF

Design of 868/915MHz SoC System Architecture for Wireless Personal Area Network (개인 무선 통신을 위한 868/915MHz SoC 시스템 구조 설계)

  • Park, Joo-Ho;Oh, Jung-Yeol;Ko, Young-Joon;Kil, Min-Su;Kim, Jae-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2007
  • According to development of wireless communication technologies, we need not only high data rate but low data rate system of low power consumption. This low data rate system is utilized in the field of home automation, health care, sensoring and monitoring, etc. IEEE 802.15.4 LR-WPAN system is the best choice for realizing ubiquitous networking system. In this paper SoC Architecture for IEEE 802.15.4 Low Rate WPAN is designed. IEEE 802.15.4 Low Rate WPAN system serves the functions and realization of home area network. We propose the SoC architecture for 868/915MHz frequency band of IEEE 802.15.4 Low Rate WPAN system. The key issue is to design SoC architecture which provides the function of Low Rate WPAN system to meet the requirement of IEEE 802.15.4 standards.

  • PDF

A Low-Energy Ultra-Wideband Internet-of-Things Radio System for Multi-Standard Smart-Home Energy Management

  • Khajenasiri, Iman;Zhu, Peng;Verhelst, Marian;Gielen, Georges
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.354-365
    • /
    • 2015
  • This work presents an Internet of Things (IoT) system for home energy management based on a custom-designed Impulse Radio Ultra-Wideband (IR-UWB) transceiver that targets a generic and multi-standard control system. This control system enables the interoperability of heterogeneous devices: it integrates various sensor nodes based on ZigBee, EnOcean and UWB in the same middleware by utilizing an ad-hoc layer as an interface between the hardware and software. The paper presents as a first the design of the IR-UWB transceiver for a portable sensor node integrated with the middleware layer, and also describes the receiver connected to the control system. The custom-designed low-power transmitter on the sensor node is fabricated with 130 nm CMOS technology. It generates a signal with a 1.1 ns pulse width while consuming $39{\mu}W$ at 1 Mbps. The UWB sensor node with a temperature measurement capability consumes 5.31 mW, which is lower than the power level of state-of-the-art solutions for smart-home applications. The UWB hardware and software layers necessary to interface with the control system are verified in over-the-air measurements in an actual office environment. With the implementation of the presented sensor node and its integration in the energy management system, we demonstrate achievement of the broad flexibility demanded for IoT.

Design and Implementation of a Systolic Architecture for Low Power Wireless Sensor Network (저 전력 무선 센서 네트워크를 위한 시스톨릭 구조 설계 및 구현)

  • Lee, Kyung-Hoon;Lee, Hak-Jai;Kim, Young-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.6
    • /
    • pp.749-756
    • /
    • 2015
  • In this paper, we propose a unique systolic structure and communication algorithm that maintains a solid link between nodes using synchronous digital communication and enables low power communication. This system was designed by using CC2500 RF transceiver, CC2590 RF front end and C8051F330 low power microcontroller. The measurement of power consumption in the network link shows below $400{\mu}W$ in data transfer rate 320bps. The system constitutes the base unit of low power wireless network that was composed of each seven link nodes having eight sensor nodes. Results of the experiments show that link nodes using a 4Ah battery could operate over 3 years without replacement.

A Frequency-Sharing Method to Use Frequency Resources Efficiently (효율적인 주파수 이용을 위한 주파수 공유 방법)

  • Kang, Sang-Gee;Hwang, Taek-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1349-1355
    • /
    • 2008
  • Recently many short-range transceiver systems, such as ZigBee, Bluetooth and RFID(Radio Frequency Identification), have been developed. These systems are mostly low-power transceivers. In the near future many more low-power transceivers are appeared for WPAN(Wireless Personal Area Network) and interference mitigation technologies are necessary to the low-power transceivers for using frequency resources efficiently. In this paper we consider two methods for sharing frequency resources. The first case is that a frequency band previously assigned fer a certain system is shared and the second case is that the white frequency band is shared. We study the method and conditions for sharing frequency resources in the above two cases. When a frequency band is shared with ZigBee, RFID, DCP (Digital Cordless Phone) and Bluetooth as an example for the first case, the sharing conditions are investigated and the results are presented. We propose a balancing factor to maintain an equal transmitting conditions between systems having a different interference mitigation technique. In the interference simulation we use FH(Frequency Hopping) as a reference system and 0.9 of a balancing factor for LBT(Listen Before Talk) and 0.8 for DS(Direct Spreading). From the simulation results we know that a balancing factor reduces interference probability therefore many more systems can be operated in the same frequency bands compared with the case without using a balancing factor.

Class 4 Active RFID Multi-hop Relay System based on IEEE 802.15.4a Low-Rate UWB in Sensor Network

  • Zhang, Hong;Hong, Sung-Hyun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.258-272
    • /
    • 2010
  • The low-rate (LR) UWB is a promising technology for the ubiquitous sensor network (USN) due to its extremely low power consumption and simple transceiver implementation. However the limited communication range is a bottleneck for its widespread use. This paper deals with a new frame structure of class 4 active RFID multi-hop relay system based on ISO/IEC 18000-7 standard integrating with IEEE 802.15.4a LR-UWB PHY layer specification, which sets up a connection to USN. As a result of the vital importance of the coverage and throughput in the application of USN, further we analyze the performance of the proposed system considered both impulse radio UWB (IR-UWB) and chirp spread spectrum (CSS). Our simulation results show that the coverage and throughput are remarkably increased.

A Study on New Geoelectric Survey and Instrumentation Using Low Frequency Electric Field Sensing Antenna (저주파 Electric Field Sensing Antenna를 이용한 새로운 탐사 및 계측에 관한 연구)

  • 배명수;여영호;손수국
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.427-430
    • /
    • 2002
  • This paper has been studied a new geoelectric survey and instrunmentation using Low Frequency Electric Field .sensing Antenna. “Low Frequency Electric Field Sensing” is a technology in new method of survey to use array type antenna, the power of operation in antenna is using AC or DC pulse instead of DC current. The architecture of system embodied transceiver system using a microprocessor(PIC) of Microcllip Technology Inc. An array antenna design and il control transmission of antenna to use CDMA in this system. It is using array type antenna for the earth、earth's crust to survey explain from theory and experience.

  • PDF

A Study on Implementation of Powerline Carrier Modem using 5-ary Frequency Shift Keying Method (5-ary 주파수 천이 키잉 방식을 이용한 전력선 캐리어 모뎀 구현에 관한 연구)

  • Park, Sung-Wook;Park, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.3
    • /
    • pp.39-44
    • /
    • 2005
  • In this paper, we use the 5-ary frequency shift keying method for robust powerline communication. To transmit the data by the 3-ary carrires among 5-ary carrirers and three carriers are 115kHz, 120kHz and 125kHz. Each time of three carrires is 0.33ms and total transmitting time duration from zero crossing point has 1ms. We use the dummy carriers which are 50kHz and 350kHz for monitoring the powerline channel state, dummy signal duration is received during 1ms. Experimentation result is shown that the implemented PLC transceiver has better than chirp transceiver at the capacitive load testing in spite of low transmission power.