• Title/Summary/Keyword: Low-power signal processing

Search Result 271, Processing Time 0.037 seconds

Differential Capacitor-Coupled Successive Approximation ADC (차동 커패시터 커플링을 이용한 연속근사 ADC)

  • Yang, Soo-Yeol;Mo, Hyun-Sun;Kim, Dae-Jeong
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This paper presents a design of the successive approximation ADC(SA-ADC) applicable to a midium-low speed analog-front end(AFE) for the maximum 15MS/s CCD image processing. SA-ADC is effective in applications ranging widely between low and mid data rates due to the large power scaling effect on the operating frequency variations in some other way of pipelined ADCs. The proposed design exhibits some distinctive features. The "differential capacitor-coupling scheme" segregates the input sampling behavior from the sub-DAC incorporating the differential input and the sub-DAC output, which prominently reduces the loading throughout the signal path. Determining the MSB(sign bit) from the held input data in advance of the data conversion period, a kind of the signed successive approximation, leads to the reduction of the sub-DAC hardware overhead by 1 bit and the conversion period by 1 cycle. Characterizing the proposed design in a 3.3 V $0.35-{\mu}m$ CMOS process by Spectre simulations verified its validity of the application to CCD analog front-ends.

Mobile ECG Measurement System Design with Fetal ECG Extraction Capability (태아 ECG 추출 기능을 가지는 모바일 심전도 측정 시스템 설계)

  • Choi, Chul-Hyung;Kim, Young-Pil;Kim, Si-Kyung;You, Jeong-Bong;Seo, Bong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.431-438
    • /
    • 2017
  • In this paper, the abdomen ECG(AECG) is employed to measure the mother's ECG instead of the conventioanl thoracic ECG measurement. The fetus ECG signal can be extracted from the AECG using an algorithm that utilizes the mobile fetal ECG measurement platform, which is based on the BLE (Bluetooth Low Energy). The algorithm has been implemented by using a replacement processor processed directly from the platform BLE instead of the large statistical data processing required in the ICA(Independent component analysis). The proposed algorithm can be implemented on a mobile BLE wireless ECG system hardware platform to process the maternal ECG. Wireless technology can realize a compact, low-power radio system for short distance communication and the IOT(Intenet of Things) enables the transmission of real-time ECG data. It was also implemented in the form of a compact module in order for mothers to be able to download and store the collected ECG data without having to interrupt or move the logger, and later link the module to a computer for downloading and analyzing the data. A mobile ECG measurement prototype is manufactured and tested to measure the FECG for pregnant women. The experimental results verify a real-time FECG extraction capability for the proposed system. In this paper, we propose an ECG measurement system that shows approximately 91.65% similarity to the MIT database and the conventional algorithm and SNR performance about 10% better.

Distance Sensing of Moving Target with Frequency Control of 2.4 GHz Doppler Radar (2.4 GHz 도플러 레이다의 주파수 조정을 통한 이동체 거리 센싱)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • In general, a Doppler radar can measure only the velocity of a moving target. To measure the distance of a moving target, it is necessary to use a frequency-modulated continuous wave or pulse radar. However, the latter are very complex in terms of both hardware as well as signal processing. Moreover, the requirement of wide bandwidth necessitates the use of millimeter-wave frequency bands of 24 GHz and 77 GHz. Recently, a new kind of Doppler radar using multitone frequency has been studied to sense the distance of moving targets in addition to their speed. In this study, we show that distance sensing of moving targets is possible by adjusting only the frequency of a 2.4 GHz Doppler radar with low cost phase lock loop. In particular, we show that distance can be sensed using only alternating current information without direct current offset information. The proposed technology satisfies the Korean local standard for low power radio equipment for moving target identification in the 2.4 GHz frequency band, and enables multiple long-range sensing and radio-frequency identification applications.

Novel Radix-26 DF IFFT Processor with Low Computational Complexity (연산복잡도가 적은 radix-26 FFT 프로세서)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Fast Fourier transform (FFT) processors have been widely used in various application such as communications, image, and biomedical signal processing. Especially, high-performance and low-power FFT processing is indispensable in OFDM-based communication systems. This paper presents a novel radix-26 FFT algorithm with low computational complexity and high hardware efficiency. Applying a 7-dimensional index mapping, the twiddle factor is decomposed and then radix-26 FFT algorithm is derived. The proposed algorithm has a simple twiddle factor sequence and a small number of complex multiplications, which can reduce the memory size for storing the twiddle factor. When the coefficient of twiddle factor is small, complex constant multipliers can be used efficiently instead of complex multipliers. Complex constant multipliers can be designed more efficiently using canonic signed digit (CSD) and common subexpression elimination (CSE) algorithm. An efficient complex constant multiplier design method for the twiddle factor multiplication used in the proposed radix-26 algorithm is proposed applying CSD and CSE algorithm. To evaluate performance of the previous and the proposed methods, 256-point single-path delay feedback (SDF) FFT is designed and synthesized into FPGA. The proposed algorithm uses about 10% less hardware than the previous algorithm.

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

A Study on Improvement of Collected Data Performance in Real-time Railway Safety Supervisory Platform (실시간 철도안전관제 플랫폼에서의 수집 데이터 성능 개선 방안 연구)

  • Shin, Kwang-Ho;Park, Jee-Won;Ahn, Jin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.233-241
    • /
    • 2018
  • Recently, integrated railway safety monitoring and control system, which is a convergence system based on data distribution service for railway safety monitoring and control, is under development. It collects safety data of vehicle, signal, power and safety monitoring facilities in real time and adopts communication middleware based on distributed service for mass data processing. However, in the case of a server device used as an existing control server, the performance of the distributed service middleware can not be exhibited due to low hardware performance due to safety reasons. In the safety control system, 200,000 packets per second were set as the transmission target, but the performance test of the LAB was not satisfied. In this paper, we analyze the characteristics of railway data to improve the data collection performance of existing equipment and apply DDS-based streaming transmission method to the data model of signal facilities and vehicle facilities with large packet amount according to the analysis result. As a result, it was confirmed that the throughput was improved about 30.4 times when the hardware performance was the same. We plan to improve the data processing performance by applying it to real-time railway safety integrated monitoring and control system in the future.

An Experimental Study on Electrical Energy Generation Based on Phase Change Materials for Application of Underwater Unmanned Vehicles (수중 무인 이동체 적용을 위한 상변화물질 기반의 전기 에너지 생성에 대한 실험적 연구)

  • Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2022
  • This study is an experimental study on how to use phase change materials(PCM) to generate electrical energy for long-term operation of underwater unmanned vehicles. The electrical energy generation method is a volume change and a pressure change that occur as a phase change material changes to a solid or liquid state according to temperature, and the change in pressure creates a flow of fluid to create electrical energy. Polyethylene glycol was used as a phase change material considering the temperature of the ocean. In addition, an electrical energy generating device that converts volume change into pressure at low temperature (1℃~2℃) in solid state and high temperature (21℃~25℃) in liquid state was fabricated. As a result of the experiment, the pressure change according to the phase change rapidly changed between 1 hour and 2 hours, and maintained a pressure of about 24MPa after 4 hours. Through this, it was confirmed that it can be used as a power source for underwater unmanned vehicles using phase change materials and temperature differences. In addition, it was found that a more improved design should be made in order to apply the phase change material to an underwater unmanned vehicle.

Design of a Inverter-Based 3rd Order ΔΣ Modulator Using 1.5bit Comparators (1.5비트 비교기를 이용한 인버터 기반 3차 델타-시그마 변조기)

  • Choi, Jeong Hoon;Seong, Jae Hyeon;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.39-46
    • /
    • 2016
  • This paper describes the third order feedforward delta-sigma modulator with inverter-based integrators and a 1.5bit comparator for the application of audio signal processing. The proposed 3rd-order delta-sigma modulator is multi-bit structure using 1.5 bit comparator instead of operational amplifier. This delta-sigma modulator has high SNR compared with single-bit 4th-order delta-sigma modulator in a low OSR. And it minimizes power consumes and simplified circuit structure using inverter-based integrator and using inverter-based integrator as analogue adder. The modulator was designed with 0.18um CMOS standard process and total chip area is $0.36mm^2$. The measured power cosumption is 28.8uW in a 0.8V analog supply and 66.6uW in a 1.8V digital supply. The measurement result shows that the peak SNDR of 80.7 dB, the ENOB of 13.1bit and the dynamic range of 86.1 dB with an input signal frequency of 2.5kHz, a sampling frequency of 2.56MHz and an oversampling rate of 64. The FOM (Walden) from the measurement result is 269 fJ/step, FOM (Schreier) was calculated as 169.3 dB.

Enhancement of Image Contrast in Linacgram through Image Processing (전산처리를 통한 Linacgram의 화질개선)

  • Suh, Hyun-Suk;Shin, Hyun-Kyo;Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2000
  • Purpose : Conventional radiation therapy Portal images gives low contrast images. The purpose of this study was to enhance image contrast of a linacgram by developing a low-cost image processing method. Materials and Methods : Chest linacgram was obtained by irradiating humanoid Phantom and scanned using Diagnostic-Pro scanner for image processing. Several types of scan method were used in scanning. These include optical density scan, histogram equalized scan, linear histogram based scan, linear histogram independent scan, linear optical density scan, logarithmic scan, and power square root scan. The histogram distribution of the scanned images were plotted and the ranges of the gray scale were compared among various scan types. The scanned images were then transformed to the gray window by pallette fitting method and the contrast of the reprocessed portal images were evaluated for image improvement. Portal images of patients were also taken at various anatomic sites and the images were processed by Gray Scale Expansion (GSE) method. The patient images were analyzed to examine the feasibility of using the GSE technique in clinic. Results :The histogram distribution showed that minimum and maximum gray scale ranges of 3192 and 21940 were obtained when the image was scanned using logarithmic method and square root method, respectively. Out of 256 gray scale, only 7 to 30$\%$ of the steps were used. After expanding the gray scale to full range, contrast of the portal images were improved. Experiment peformed with patient image showed that improved identification of organs were achieved by GSE in portal images of knee joint, head and neck, lung, and pelvis. Conclusion :Phantom study demonstrated that the GSE technique improved image contrast of a linacgram. This indicates that the decrease in image quality resulting from the dual exposure, could be improved by expanding the gray scale. As a result, the improved technique will make it possible to compare the digitally reconstructed radiographs (DRR) and simulation image for evaluating the patient positioning error.

  • PDF

A 2.4 GHz Bio-Radar System with Small Size and Improved Noise Performance Using Single Circular-Polarized Antenna and PLL (하나의 원형 편파 안테나와 PLL을 이용하여 소형이면서도 개선된 잡음 성능을 갖는 2.4 GHz 바이오 레이더 시스템)

  • Jang, Byung-Jun;Park, Jae-Hyung;Yook, Jong-Gwan;Moon, Jun-Ho;Lee, Kyoung-Joung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1325-1332
    • /
    • 2009
  • In this paper, we design a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals with small size and improved noise performance using single circular-polarized antenna and phase-locked loop. The demonstrated bio-radar system consists of single circular-polarized antenna with $90^{\circ}$ hybrid, low-noise amplifier, power amplifier, voltage-controlled oscillator with phase-locked loop circuits, quadrature demodulator and analog circuits. To realize compact size, the printed annular ring stacked microstrip antenna is integrated on the transceiver circuits, so its dimension is just $40\times40mm^2$. Also, to improve signal-to-noise-ratio performance by phase noise due to transmitter leakage signal, the phase-locked loop circuit is used. The measured results show that the heart rate and respiration accuracy was found to be very high for the distance of 50 cm without the additional digital signal processing.