• Title/Summary/Keyword: Low-grade source

Search Result 89, Processing Time 0.02 seconds

Performance Characteristics Analysis of Evaporator in Ammonia-Water Rankine Cycle Based on Exergy and Entransy (암모니아-물 랭킨사이클의 증발기에서의 엑서지 및 엔트랜시 성능 특성 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.621-628
    • /
    • 2019
  • The use of the ammonia-water zeotropic mixture as a working fluid in the power generating system has been considered as a proven technology for efficient recovery of low-grade heat sources. This paper presents a thermodynamic performance analysis for ammonia-water evaporator using low-grade heat source, based on the exergy and entransy which has been recently introduced as a physical quantity to describe the heat transfer ability of an object. In the analysis, effects of the ammonia mass fraction and source temperature of the binary mixture are investigated on the system performance such as heat transfer, effectiveness, exergy destruction, entransy dissipation, and entransy dissipation based thermal resistance. The results show that the ammonia mass concentration and the source temperature have significant effects on the thermodynamic system performance of the ammonia-water evaporator.

Exergy and Entransy Performance Characteristics of Cogeneration System in Series Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 직렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.637-645
    • /
    • 2020
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of a regenerative organic rankine cycle (ORC) and an additional process heater in a series circuit. Special attention is paid to the effects of the turbine inlet pressure, source temperature, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrance analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;KIM, KYOUNGJIN;JUNG, YOUNGGUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Comparative Exergy Analysis of Kalina and Organic Rankine Cycles for Conversion of Low-Grade Heat Source (저등급 열원의 변환을 위한 칼리나 사이클과 유기 랭킨 사이클의 엑서지 성능의 비교 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;KO, HYUNG JONG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.105-111
    • /
    • 2020
  • The organic Rankine cycle (ORC) and the Kalina cycle system (KCS) are being considered as the most feasible and promising ways to recover the low-grade finite heat sources. This paper presents a comparative exergetical performance analysis for ORC and Kalina cycle using ammonia-water mixture as the working fluid for the recovery of low-grade heat. Effects of the system parameters such as working fluid selection, turbine inlet pressure, and mass fraction of ammonia on the exergetical performance are parametrically investigated. KCS gives lower lower exergy destruction ratio at evaporator and higher second-law efficiency than ORC. The maximum exergy efficiency of ORC is higher than KCS.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

Performance Analysis of a Combined Cycle of Kalina and Absorption Refrigeration for Recovery of Low-Temperature Heat Source (저온 열원의 활용을 위한 칼리나/흡수냉동 복합사이클의 성능 해석)

  • KIM, KYOUNG HOON;KO, HYUNG JONG;JUNG, YOUNG GUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.490-496
    • /
    • 2018
  • Recently, the power and refrigeration cogeneration based on Kalina cycle has attracted much attention for more efficient utilization of low-grade energy. This study presents a thermodynamic performance analysis of a cogeneration cycle of power and absorption refrigeration based on Kalina cycle. The cycle combines Kalina cycle (KCS-11) and absorption cycles by adding a condenser and an evaporator between turbine and absorber. The effects of ammonia mass fraction and separation pressure were investigated on the system performance of the system. Results showed that the energy utilization of the system could be greatly improved compared to the basic Kalina cycle.

Energy and Exergy Analysis of Kalina Based Power and Cooling Combined Cycle (칼리나 사이클을 기반으로 하는 동력 및 냉동 복합 사이클의 에너지 및 엑서지 성능 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;KO, HYUNG JONG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.2
    • /
    • pp.242-249
    • /
    • 2020
  • The Kalina cycle (KC) is considered as one of the most efficient systems for recovery of low grade heat. Recently, Kalina based power and cooling cogeneration cycles (KPCCCs) have been suggested and attracted much attention. This paper presents an energy and exergy analysis of a recently suggested KPCCC with flexible loads. The cycle consists of a KC (KCS-11) and an aqua-ammonia absorption refrigeration cycle. By adjusting the splitting ratios, the cycle can be operated with four modes of pure Kalina cycle, pure absorption cooling cycle, Kalina-cooling parallel cycle, and Kalina-cooling series cycle. The effects of system variables and the operating modes on the energetic and exergetic performances of the system are parametrically investigated. Results show that the system has great potential for efficient utilization of low-grade heat source by adjusting loads of power and cooling.

A Study on the Effect of Fashion Information Sources on Clothing Purchase Decision Process (의복 구매의사 결정과정에 따른 패션정보원의 영향연구 -여대생을 중심으로-)

  • 양리나;엄소희;최나영;김문숙
    • The Research Journal of the Costume Culture
    • /
    • v.4 no.2
    • /
    • pp.157-171
    • /
    • 1996
  • The purpose of this study was to find out the effect of fashion information source in the stage of purchase decision-making and difference by stage of purchase decision-making and difference by stage of the effect extend, and to analyze the difference by fashion information source. For this study, the data were collected through the questionnaire distributed to 337 female students from five universities. The results are as follows: 1) There was significant difference among the effect to fashion information source according to the purchase decision-making stage. At the adoption stage, fashion information source have the most effect on clothing purchase. 2) The effect of Impersonal Source in the purchase decision-making stage was gradually decreased fro the initial (awareness, interest) sage to the late stage. 3) The effect of Personal Source in the purchase decision-making stage was gradually increased from the initial (awareness, interest) stage to the late stage. 4) Addition stage was highly influenced by friend and family that was Personal Independent Source than other fashion information source. However the final selection on clothing purchase was not influenced by friend and family. 5. There was significant difference among the effect of fashion information source according to the grade. Low garde students were highly influenced by Personal Source on clothing purchase, but high grade students were highly influenced by Impersonal Sources on clothing purchase. 6) There was significant difference among the effect of fashion information source according to the major. The students a majored clothing & textile-design were highly influenced by Impersional Source. These results suggest that fashion information source was significantly different according to purchase decision-making stage and was influenced by grade and major of subjects.

  • PDF

Three-dimensional thermal-hydraulics/neutronics coupling analysis on the full-scale module of helium-cooled tritium-breeding blanket

  • Qiang Lian;Simiao Tang;Longxiang Zhu;Luteng Zhang;Wan Sun;Shanshan Bu;Liangming Pan;Wenxi Tian;Suizheng Qiu;G.H. Su;Xinghua Wu;Xiaoyu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4274-4281
    • /
    • 2023
  • Blanket is of vital importance for engineering application of the fusion reactor. Nuclear heat deposition in materials is the main heat source in blanket structure. In this paper, the three-dimensional method for thermal-hydraulics/neutronics coupling analysis is developed and applied for the full-scale module of the helium-cooled ceramic breeder tritium breeding blanket (HCCB TBB) designed for China Fusion Engineering Test Reactor (CFETR). The explicit coupling scheme is used to support data transfer for coupling analysis based on cell-to-cell mapping method. The coupling algorithm is realized by the user-defined function compiled in Fluent. The three-dimensional model is established, and then the coupling analysis is performed using the paralleled Coupling Analysis of Thermal-hydraulics and Neutronics Interface Code (CATNIC). The results reveal the relatively small influence of the coupling analysis compared to the traditional method using the radial fitting function of internal heat source. However, the coupling analysis method is quite important considering the nonuniform distribution of the neutron wall loading (NWL) along the poloidal direction. Finally, the structure optimization of the blanket is carried out using the coupling method to satisfy the thermal requirement of all materials. The nonlinear effect between thermal-hydraulics and neutronics is found during the blanket structure optimization, and the tritium production performance is slightly reduced after optimization. Such an adverse effect should be thoroughly evaluated in the future work.

Thermodynamic Performance Analysis of Ammonia-Water Rankine Cycle and Organic Rankine Cycle Using Cold Energy of LNG (LNG 냉열을 이용하는 암모니아-물 랭킨 사이클과 유기 랭킨 사이클의 열역학적 성능 특성 해석)

  • KIM, KYOUNG HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2020
  • Recently, the technologies to utilize the cold energy of liquefied natural gas (LNG) have attracted significant attention. In this paper, thermodynamic performance analysis of combined cycles consisting of ammonia Rankine cycle (AWR) and organic Rankine cycle (ORC) with LNG Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the effects of the important system parameters such as turbine inlet pressure, ammonia mass fraction, working fluid on the system performance are systematically investigated. The results show that the thermal efficiency of AWR-LNG cycle is higher but the total power production of ORC-LNG cycle is higher.