• Title/Summary/Keyword: Low-flow system

Search Result 1,751, Processing Time 0.031 seconds

Flow Uniformity Analysis of DOC-DPF System using CFD (CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석)

  • Kim, Taehoon;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

Improvement and Application of Total Maximum Daily Load Management System of Korea: 1. Calculation of Total Amount of Pollutant Load in the Anyangcheon Watershed (우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정)

  • Kim, Kyung-Tae;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong;Seong, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.972-978
    • /
    • 2009
  • This study modifies the present total maximum daily load (TMDL) system of Ministry of Environment and applies to the Anyangcheon watershed. Hydrologic Simulation Program-FORTRAN (HSPF) model is used to simulate both runoff and non-point source pollution, simultaneously, instead of QUAL2E. The drought flow (355th daily flow) is proposed for the target water quantity since it is easier to satisfy low flow (275th daily flow) for the target water quality than drought flow. The increase of discharge is more than the increase of pollutant load except for the period under low flow. The measured unit loads for non-point source are used to consider the regional runoff characteristics. The measured water quantity and quality data are used since the ministry of environment supports only water quality. This analysis results show some reasons for the improvement of the present TMDL system of Korea.

Study of the Supersonic Ejector-Diffuser System with a Mixing Guide Vane at the Inlet of Secondary Stream

  • Kong, Fanshi;Lijo, Vincent;Kim, Heuy-Dong;Jin, Yingzi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.182-186
    • /
    • 2011
  • Ejector-diffuser system has long been used in many diverse fields of engineering applications and it has advantages over other fluid machinery, because of no moving parts and structural simplicity. This system makes use of high-pressure primary stream to entrain the low-pressure secondary stream through pure shear actions between two streams. In general, the flow field in the ejector-diffuser system is highly complicated due to turbulent mixing, compressibility effects and sometimes flow unsteadiness. A fatal drawback of the ejector system is in its low efficiency. Many works have been done to improve the performance of the ejector system, but not yet satisfactory, compared with that of other fluid machinery. In the present study, a mixing guide vane was installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A CFD method has been applied to simulate the supersonic flows inside the ejector-diffuser system. The present results obtained were validated with existing experimental data. The mixing guide vane effects are discussed in terms of the entrainment ratio, total pressure loss as well as pressure recovery.

  • PDF

Computational Analysis of an Inverted-type Cross-flow Turbine for Ultra-low head Conditions (전산유체역학을 이용한 초저낙차 상황에서의 도립형 횡류수차의 해석 및 설계 최적화)

  • Ham, Sangwoo;Ha, Hojin;Lee, Jeong Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.76-86
    • /
    • 2019
  • The cross-flow turbine is a key hydraulic power system that is widely due to low costs, high efficiency, and low maintenance. In particular, the cross-flow turbine considered as the most suitable turbine for low head situations as it is known to operate down to 5 m of water head. However, the conventional cross-flow turbine is unsuitable for ultra-low head situations with less than a 3 m water head. In this study, we propose an inverted-type cross-flow turbine to overcome the limitations of conventional cross-flow turbines under ultra-low head situations. First, we described the limitations of conventional turbines and suggested a new turbine for the ultra-low head circumstances. Second, we investigated the performance of the new turbine using CFD analysis. Results demonstrated the effects of the design parameters, such as number of blades and rotor diameter ratio, on the performance of the suggested turbine. As a result, we developed an inverted-type cross-flow turbine with up to 60% efficiency under low water head conditions.

Feasibility Study of UV-Disinfection for Water Reuse of Effluent from Wastewater Treatment Plant (용수재이용을 위한 하수처리 유출수의 UV 소독 효율 연구)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.126-137
    • /
    • 2003
  • The feasibility study of UV-disinfection system was performed for disinfection of effluent from wastewater treatment plant. Three low-pressure UV lamps of 17, 25, and 41 W were examined with various flow rates. Low-pressure UV lamps of 17W were examined with various turbidity, DOM (dissolved organic matter), and SS (suspended solid). The pilot plant was a flow-through type UV-disinfection system, and the range of exposure time varied from 5 to 40 seconds, turbidity from 0 to 40 NTU, DOM from 0 to 30 mg/L, and SS from 10 to 40 mg/L. The 41W lamp demonstrated complete disinfection showing no survival ratio in all the experimental conditions, and generally 17W and 25W lamps also showed high removal ratio over 97%. For the same UV dose (UV intensity times exposure time), high intensity-short exposure conditions showed better disinfection efficiency than low intensity-long exposure conditions. While the effects of turbidity and DOM were not apparent, the effects of SS was significant on the disinfection efficiency which indicates that SS control before UV-disinfection appears to be necessary to increase removal efficiency. Considering characteristics of effluent from existing wastewater treatment plants, cost-effectiveness, stable performance, and minimum maintenance, the flow-through type UV-disinfection system with high intensity and low-pressure lamps was thought to be a competitive disinfection system for wastewater reclamation.

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

A Study on Performance Characteristics of Small Airlift Pump (소형 에어리프트 펌프의 성능특성에 관한 연구)

  • Oh, S.K.;Lee, G.Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.34-39
    • /
    • 2000
  • Performance data in the literature on air lift pumps have been based primarily on pumps of long length and large diameter (high lift pumps). Since mariculture operations involve pumps of relatively short length and small diameter, performance data are required for efficient operation. To provide such data, an experimental apparatus was designed and fabricated to test all lift pumps from 2.1 to 3.4 cm inside diameter and from 40 to 300 cm in length. Instrumentation was provided to measure water flow rate and air flow rate as well as water temperature, air temperature, and pressure throughout the system. Results from this study correlate well with high lift pump data in that, for a given pump geometry, maximum water flow occurs for a specific air flow rate. Driving the pump with air flows larger or smaller than this optimum flow rate will decrease the pumping rate. The optimum flows are significantly different for low lift pumps compared to high lift pumps. However, the pumping rate for low lift pumps approaches that for high lift pumps with increasing length.

  • PDF

Development of the Low Noise Design Program for Construction Equipment's Muffler under the High Velocity Flow (유동 소음을 고려한 저소음 머플러 설계 프로그램 개발)

  • Kim, Hyung-Taek;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.483-488
    • /
    • 2008
  • The exhaust system, including a muffler, is one of the major sources to generate the radiated noise of construction equipment. In general, the muffler is applied to construction equipment in order to reduce the exhaust noise. Sometimes, however, the higher exhaust noise can be experienced due to the flow effect inside a muffler. So, it is required to consider the flow effect to reduce the exhaust noise level of construction equipment. In this paper, various tests were performed to calculate the flow noise effect inside a muffler. Through a series of tests with respect to a variety of design parameters, a new design program for low noise muffler was developed and applied to reduce the exhaust noise of the construction equipments. These results make it possible to understand the dynamic characteristics of the flow noise and to design the low noise muffler for the construction equipments.

  • PDF

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • Chang, Tae-Jin;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF