• Title/Summary/Keyword: Low-fin tube

Search Result 81, Processing Time 0.024 seconds

Condensation heat transfer coefficients of CFC-11 and its alternative refrigerants (CFC-11과 그 대체냉매의 응축 열전달 계수)

  • Joo, Jae-Kil;Cho, Seong-Joon;Jung, Dong-Soo;Kim, Chong-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.830-840
    • /
    • 1997
  • In this study, condensation heat transfer coefficients(HTCs) of CFC-11, HCFC-123 and HCFC-141b are measured, which are used/or considered as working fluids in centrifugal chillers. The main objectives of this study are to measure and compare the HTCs of various refrigerants on plain and low fin tubes and also to find out the optimum fin density of the low fin tubes. To accomplish these goals, HTCs of three refrigerants are measured for the plain tube as well as 4 types of low fin tubes. All measurements are carried out at the vapor temperature of 39.deg. C with the wall temperature difference of 3 .deg. C ~ 8.deg. C. For all the refrigerants tested, a low fin tube of 28 fins per inch yielded the best performance among all the tubes tested. For the plain tube, the HTCs of CFC-11 and HCFC-141b were very similar and those of HCFC-123 were 10% lower than those of CFC-11.Thus, it can be concluded that HCFC-123 and HCFC-141b are acceptable as alternative refrigerants for CFC-11 from the view point of condensation heat transfer.

Local Heat Transfer Characteristics on Fin Surface of Plate Fin - Oval Tube with Delta Wing Vortex Generators (Plate fin-oval tube 열교환기에서 와류발생체에 의한 fin 표면에서의 국소 열전달 특성)

  • Shin, Seok-Won;Chung, In-Kee;Kim, Soo-Youn
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2390-2395
    • /
    • 2007
  • The present research was experimentally performed to analyze the effect of delta-wing vortex generators(DWVG) on the heat transfer of fin surface of the plate fin-oval tube. The local heat transfer coefficient of the fin surface for four kinds of DWVG's arrangement was measured by the naphthalene sublimation technique for Reynolds numbers ranging from 2000 to 3200. The results showed that the heat transfer of the plate fin-oval tube can be significantly enhanced by DWVG for relatively low Reynolds numbers.

  • PDF

A Study on the Thermal Performance of Fin and Tube Sensible Heat Exchanger according to Fin Geometry and Flowrate (휜 형상 및 유량에 따른 휜-관 현열 열교환기의 전열성능에 관한 연구)

  • Lee, Min-Su;Jeon, Chang-Duk;Lee, Jin-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.402-407
    • /
    • 2008
  • This study is performed to investigate heat transfer characteristics for thermal performance of fin-and-tube sensible heat exchangers under the low air flowrate according to fin geometry combination and coolant flowrate control. Fins and tubes of samples were separated between front row and rear row. Experiment results are plotted heat transfer rate of each row, heat transfer coefficient and sensible heat ratio against water flowrate control of each row. It is observed that thermal performance can be enhanced by fin geometry combination and water flowrate control of each row under the low air flowrate.

  • PDF

A Study on the Heat Transfer Improvement of Integral-Fin Tubes by External Fin Effect (전조 나선핀 튜브의 외부핀 형상 변화에 의한 열전달 향상에 관한 연구)

  • Han, Gyu-Il;Jo, Dong-Hyeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.33-44
    • /
    • 1994
  • This work studies for boiling and condensation heat transfer performance of trapezoidally shaped integral-fin tubes having fin densities from 748fpm to 1654fpm. For comparison, tests are made using a plain tube having the same inside and outside diameter as that of the root of fins of finned tubes. Hahne's theoretical model and Webb's theoretical model are used to predict the R-11 boiling heat transfer coefficient and condensing heat transfer coefficient respectively for plain tube and all integral-fin tubes. Experiments are carried out using R-11 as working fluid. This work is limited to film-wise condensation and pool boiling on the outside surface of plain tube and 4 low integral-fin tubes. In case of condensation, the refrigerant condenses at saturation state of 32$^{\circ}C$ on the outside tube surface cooled by coolant and in case of boiling. the refrigerant evaporates at saturation state of 1bar on the outside tube surface. The amount of non-con-densable gases in the test loop is reduced to a negligible value by repeated purging. The actual boiling and condensing processes occur on the outside tube surfaces. Hence the nature of this surface geometry affects the heat transfer performances of condenser and evaporator in refrigerating system. The condensation heat transfer coefficient of integral-fin tube is enhanced by both extended tube surface area and surface tension. The ratio of the condensation heat transfer coefficients of finned to plain tubes is greater than that of surface area of finned to plain tubes, while ratio of the boiling heat transfer coefficient of finned to plain tubes shows reverse result. As a result, low integral-fin tube can be used in condenser more effectively than used in evaporator.

  • PDF

Pool Boiling Heat Transfer Coefficient of R245fa on the Plain Tube and the Low Fin Tube (평활관과 낮은 핀관에서 R245fa의 풀 비등 열전달계수)

  • Park, Ki-Jung;Lee, Yo-Han;Lim, Byeong-Deok;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.208-215
    • /
    • 2011
  • In this work, pool boiling heat transfer coefficients(HTCs) of R22, R123, R134a, and R245fa are measured on both horizontal plain and 26 fpi low fin tubes. The pool boiling temperature is maintained at $7^{\circ}C$ and heat flux is varied from 80 $kW/m^2$ to 10 $kW/m^2$ with an interval of 10 $kW/m^2$. Wall temperatures are measured directly by thermocouples inserted through holes of 0.5 mm diameter. Test results show that HTCs of high vapor pressure refrigerants are usually higher than those of low pressure fluids in both plain and low fin tubes. On a plain tube, HTCs of R245fa are 23.3% higher than those of R123 while on a 26 fpi low fin tube, HTCs of R245fa are 46.3% higher than those of R123. The fin effect is more prominent with low vapor pressure refrigerants than with high vapor pressure ones due to a sweeping effect.

Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube (마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성)

  • 장세환;정시영;홍영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

Pool boiling heat transfer coefficients of alternative refrigerants on low fin tubes (낮은 핀관에서 대체냉매의 풀비등 열전달계수)

  • 송길홍;이준강;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.411-422
    • /
    • 1998
  • In this study, experiments were carried out to provide nucleate pool boiling heat transfer data for a plain tube and 4 different low fin tubes employing 2 refrigerant mixtures of R410A, R407C, and 12 pure fluids. Low fin tubes were machined on a 19.05mm nominal outside diameter copper block according to the manufacturer's low fin tube specifications. Cartridge heaters were used to generate uniform heat flux on the tubes. For all refrigerants, heat flux varied from 10㎾/$\m^2$ to 80㎾/$\m^2$. It is found that heat transfer coefficients(HTCs) of high vapor pressure refrigerants are usually higher than those of low pressure fluids. On the other hand, the fin effect was more prominent with low pressure refrigerants than with high pressure ones. Optimum fin density as well as the increase in heat transfer coefficient with the increase in fin density were found to be strongly fluid dependent. HTCs of Rl23, a low pressure alternative refrigerant, were similar to those of Rll while HTCs of R134a, an intermediate pressure alternative refrigerant, were roughly 20% higher than those of Rl2. Finally, HTCs of R32, R125, R143a, and R410A were all higher than those of R22 by 30~50%.

  • PDF

Heat Transfer Performance of Individual Rows in Fin-Tube Heat Exchangers (핀-관 열교환기에서 개별 열의 열전달 효과)

  • Jeong, Ji-Hwan;Chang, Keun-Sun;Lee, Hyun-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.238-244
    • /
    • 2003
  • An experimental study was performed to examine the heat transfer performance of individual rows of fin-tube heat exchangers. The heat transfer performance was measured using air-enthalpy type calorimeter. The examined heat exchangers consists of $7{\Phi}$ tube and fin patterns of them are slit and louver types. Equivalent fin spacing are 18 FPI for all samples, and the number of tube rows were 2. In order to confirm that thermal boundary condition on fins of each row are the same, physically separated between two rows as well as connected heat exchangers were used. The frontal air velocity varied from 0.7 to 2.5 m/s. Heat transfer performance for each row are measured. It was observed that the heat transfer coefficient of the 2nd row were smaller than that of the 1st row at low Reynolds number while larger at high Reynolds number.

  • PDF

Heat Transfer Performance of Individual Rows in Fin-Tube Heat Exchangers (2열 핀-관 열 교환기의 열별 전열성능 측정)

  • 권영철;정지환;장근선;홍기수;진심원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.280-286
    • /
    • 2004
  • An experimental study is peformed to examine the heat transfer performance of individual rows of fin-tube heat exchangers. The heat transfer performance is measured using an air-enthalpy type calorimeter. The examined heat exchangers consist of 7mm tube and fin patterns of them are slit and louver types. Equivalent fin spacings are 18 fins per inch(fpi) for all samples, and the number of tube rows are two. In order to confirm that thermal boundary condition on fins of each row are the same, physically separated between two rows as well as connected heat exchangers are used. The frontal air velocity is varied from 0.7 to 2.5㎧. Heat transfer performance for each row is measured. It is observed that the heat transfer coefficient of the second row is smaller than that of the first row at low Reynolds number while larger at high Reynolds number.

Heat Transfer Correlation for the Forced Convective Flow on Single Circular Fin-tube Heat Exchanger

  • Kang Hie-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.14-18
    • /
    • 2006
  • This study was performed to investigate the heat transfer characteristics of the circular fin-tube heat exchanger. This paper contains the experimental data for the seven kinds of fin geometries. The correlation of Stasiulevicius agreed with the experimental data at high Reynolds number, however not well at low Reynolds number. The Nusselt number was well correlated with Graetz number, and showed a transition near Gz=10. An empirical correlation proposed in the present study agreed well with the experimental data.