• 제목/요약/키워드: Low-field MRI

검색결과 66건 처리시간 0.021초

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Huang, Shaoying;Ren, Zhi Hua;Obruchkov, Sergei;Gong, JIa;Dykstra, Robin;Yu, Wenwei
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권3호
    • /
    • pp.179-201
    • /
    • 2019
  • Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

Electromagnetic design study of a 7 T 320 mm high-temperature superconducting MRI magnet with multi-width technique incorporated

  • Jang, Won Seok;Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bang, Jeseok;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.30-34
    • /
    • 2021
  • Superconducting magnets have paved the way for opening new horizons in designing an electromagnet of a high field magnetic resonance imaging (MRI) device. In the first phase of the superconducting MRI magnet era, low-temperature superconductor (LTS) has played a key role in constructing the main magnet of an MRI device. The highest magnetic resonance (MR) field of 11.7 T was indeed reached using LTS, which is generated by the well-known Iseult project. However, as the limit of current carrying capacity and mechanical robustness under a high field environment is revealed, it is widely believed that commercial LTS wires would be challenging to manufacture a high field (>10 T) MRI magnet. As a result, high-temperature superconductor together with the conducting cooling approach has been spotlighted as a promising alternative to the conventional LTS. In 2020, the Korean government launched a national project to develop an HTS magnet for a high field MRI magnet as an extent of this interest. We have performed a design study of a 7 T 320 mm winding bore HTS MRI magnet, which may be the ultimate goal of this project. Thus, in this paper, design study results are provided. Electromagnetic design and analysis were performed considering the requirements of central magnetic field and spatial field uniformity.

저자장 자기공명영상 시스템 내에서 초상자성 나노입자 온열치료를 위한 발열 평가 (Feasibility Study on Magnetic Nanoparticle Hyperthermia in Low Field MRI)

  • 김기수;조민형;이수열
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권4호
    • /
    • pp.105-110
    • /
    • 2014
  • For the combination of MRI and magnetic particle hyperthermia(MPH), we investigated the relative heating efficiency with respect to the strength of the static magnetic field under which the magnetic nanoparticles are to be heated by RF magnetic field. We performed nanoparticle heating experiments at the fringe field of 3T MRI magnet with applying the RF magnetic field perpendicularly to the static magnetic field. The static field strengths were 0T, 0.1T, 0.2T, and 0.3T. To prevent the coil heat from conducting to the nanoparticle suspension, we cooled the heating solenoid coil with temperature-controlled water with applying heat insulators between the solenoid coil and the nanoparticle container. We observed significant decrease of heat generation, up to 6% at 0.3T(100% at 0T), due to the magnetic saturation of the nanoparticles of 15 nm diameter under the static field. We think MPH is still feasible at low magnetic field lower than 0.3T if stronger RF magnetic field generation is permitted.

Partial Solution for Concomitant Gradient Field in Ultra-low Magnetic Field: Correction of Distortion Artifact

  • Lee, Seong-Joo;Shim, Jeong Hyun
    • 한국자기공명학회논문지
    • /
    • 제24권3호
    • /
    • pp.66-69
    • /
    • 2020
  • In ultra-low field magnetic resonance imaging (ULF-MRI), the strength of a static magnetic field can be comparable to that of gradient field. On that occasion, the gradient field is accompanied by concomitant gradient field, which yields distortion and blurring artifacts on MR images. Here, we focused on the distortion artifact and derived the equations capable of correcting it. Its usefulness was confirmed through the corrections in both simulated and experimental images. This solution will be effective for acquiring more accurate images in low and/or ultra-low magnetic fields.

바이어스필드에 의해 왜곡된 MRI 영상자료분할을 위한 EM 알고리즘 기반 접근법 (EM Algorithm-based Segmentation of Magnetic Resonance Image Corrupted by Bias Field)

  • 김승구
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.305-319
    • /
    • 2003
  • 본 연구에서는 바이어스 필드에 의해 왜곡된 MRI 영상에 대한 분할을 위해 확장된 EM 알고리즘을 기반으로 한 통계적 접근법을 제시한다. 영상의 명암값을 자료로 하는 분할기법들은 고주파 성분의 잡음 뿐만 아니라 영상을 불균질하게 만드는 바이어스 필드라는 저주파 성분의 왜곡에 특히 취약하다. 이 문제를 해결하기 위해 본 논문에서는 잡음을 효과적으로 제어하기 위해 마코프랜덤필드가 적용된 정규혼합모형을 고려하며, 효과적인 바이어스 필드의 보정을 위해 페널티-우도를 도입하여 추정하는 방법으로 고안되었다.

7T MRI에서 B1 필드 조정을 위해 페로브스카이트 재료를 이용한 자기공명영상 향상 (MRI Enhancement using Perovskite Material for B1 Field Control at 7T)

  • 김용태;김주연;백현만
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.565-573
    • /
    • 2021
  • 인체 내 전자기장의 공간 분포는 고 유전율 재료를 사용하여 비교적 간단하게 조정할 수 있다. 이 방법은 다른 방법에 비해 보완적인 성격이 강하지만 특정 응용 분야에서 강력한 유전체 시밍용 도구로 활용될 수 있다. 기하학적으로 자유로운 형상으로 제조 가능하며 시스템의 어떠한 변경 없이 목적에 따라 제작된 패드를 적용할 수 있다. 특히 초 고자장(ultrahigh magnetic field UHF) MRI에서 높은 작동 주파수로 인해 낮은 감도 (low sensitivity)를 갖는 송신 (B1+) 및 수신 (B1-) 필드의 강도를 높이는 데 사용되는 임상목적의 고 유전율 패드는 잠재적 가치가 상당히 클 뿐만 아니라 그 효과가 클 것으로 예상되는 UHF MRI에 적용된 연구가 적기 때문에 이 연구에서는 티탄산 칼슘의 현탁액으로 제조된 고 유전율 패드를 실험실에서 직접 개발하였으며 UHF 7T 자기공명영상 MRI의 다양한 프로토콜에서 임상적으로 유용한 영상의 신호증가를 확인하였다.

Design of Low Field RF Coil for Open MRI System by Electric Dipole Radiation

  • 김경락;양형진;오창현
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2001년도 제6차 학술대회 초록집
    • /
    • pp.174-174
    • /
    • 2001
  • Purpose: Dimensions of body RF coil composed of 4 rectangular loops for low field open MRI hav been optimized. The design result shows the field inhomogeneity of B1 field below 1.5 dB in the 25 cm DSV can be achieved. Method: Our low field RF coil is composed of 4 rectangular strip loops that assumed to b located at both the bottom and top sides of permanent magnet. All the loops have identica dimensions and current amplitude. First, the inductance of a loop is calculated. Second, the current distribution on the coil strip is calculated by using finite difference time doma method (FDTD). It takes as much as 4 days in FDTD simulation for low frequency RF field That's why the electrical dipole radiation method is used for simulation. With the curren distribution obtained using the FDTD simulation, for various dimensional parameters th magnetic field has been calculated by electric dipole radiation method, where the curren elements are regarded as electric dipole radiation sources. The field pattern from electri dipole radiation is almost same as that from FDTD simulation. Also, it is same as that fro the result using the Viot-Savart equation, for far tone radiation term becomes zero and th Bl field amplitude of near one radiation is the same as the B field due to static current The field homogeneity is calculated in the 25 cm BSV.

  • PDF

Fundamental Background for 3T MRI/MRS

  • Choe, Bo-Young
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2002년도 제7차 학술대회 초록집
    • /
    • pp.47-49
    • /
    • 2002
  • At present, the trend of magnetic field strength in MRI system is dramatically changing. In early 70, the only low field (<0.5T) was developed. It was technically difficult to develop the high field system. At that time, people believed that the fine MR imaging could not be obtained in the high field MR system due to the magnetic susceptibility effect. However, 1.5T system was evolved at the end of 80, and used for clinical usage. Thus, it was proved that the signal to noise ratio (SNR) could be greatly contribute to enhance the image quality. And, the results of functional MRI and MR spectroscopy could be improved in the higher field MR system. So, 8T system was eventually developed in Ohio State University Hospital at the end of 90. Therefore, there is no doubt that the system with the ultra high magnetic field strength will be developed near future in 21 century.

  • PDF

Design of Body RF Coil with Multiple Strips for Open MRI System by Pseudo Electric Dipole Radiation

  • 김경락;류승학;류연철;양형진;오창현
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2002년도 제7차 학술대회 초록집
    • /
    • pp.76-76
    • /
    • 2002
  • Purpose: The purpose of this study is to optimize the configuration of body RF coil composed of 4 planar subcoils for low field open MRI. Method: Our low field RE coil is composed of 4 subcoils assumed to be located at both the bottom and top sides of permanent magnet. Each subcoils has 3 main strips. The coil system has mirror inversion symmetry. First, the currents on the strips are obtained by inductance calculation and circuit analysis, Second, all the strips are divided into line strip elements across the strips, the self Inductances of line strip elements and the mutual inductances among the line strip elements are calculated, and current distributions of strip are obtained by circuit analysis, where each strip is considered as parallel combination of line strip elements. Finally all the line strip elements are segmented, magnetic field has been calculated by pseudo electric dipole radiation method, where the current elements are regarded as pseudo electric dipole radiation sources. We have performed above procedures for various configurations of RE coil. The field homogeneity is calculated in the 25 cm DSV.

  • PDF

척추 MRI 검사 시 척추 유합술로 인한 금속 인공물 억제 방법에 대한 고찰 (Consideration on Methods to Suppress Metal Artifacts Caused by Spinal Fusion during Spine MRI Study)

  • 유세종;권순용;김성호
    • 한국방사선학회논문지
    • /
    • 제17권7호
    • /
    • pp.1123-1131
    • /
    • 2023
  • 본 연구는 척추 MRI 검사 시 척추 유합술로 인한 금속 인공물을 효과적으로 억제하는 방법을 제시하고자 하였다. 이를 위해 척추 수술용 나사로 제작된 팬텀을 제작하여 금속 인공물을 재현하였다. 그리고 1.5T 그리고 3.0T MRI 장치로 영상을 획득하여 자기장 세기에 따른 금속 인공물의 변화를 평가하였다. 더불어 수신대역폭을 200, 400, 800 Hz/PX로 증가시키며 금속 인공물을 평가하였다. 그 결과 1.5T MRI 장치에서 획득한 영상에서 발생한 금속 인공물은 3.0T MRI 장치에서 획득한 영상과 비교하여 약 52.2% 감소하여 유의한 차이를 보였다(p<0.05). 특히, 신호 감쇄 및 신호 누적 영역이 각각 약 52.81%, 42.71% 감소하여 금속 인공물 억제에 큰 효과가 있었다. 반면, 수신대역폭을 200에서 800 Hz/PX까지 증가시키며 영상을 획득한 경우는 1.5T MRI 장치의 경우 최대 8.93%, 3.0T MRI 장치의 경우 최대 10.98% 감소하여 유의미한 효과가 없었다(p>0.05). 본 연구의 결과, 수신대역폭의 증가는 신호 감쇄를 줄여 일부 금속 인공물을 줄였지만 신호 누적을 억제하지 못해 큰 효과가 없었다. 하지만 3.0T에서 1.5T로 자기장의 세기를 줄인 경우, 신호 감쇄와 신호 누적이 크게 감소해 금속 인공물을 효과적으로 개선할 수 있었다. 따라서 척추 유합술로 인한 금속 인공물을 억제하기 위해서는 저 자기장 MRI 장치에서 검사하는 것이 가장 효과적인 방법이라고 할 수 있다.