• Title/Summary/Keyword: Low-dose Computed Tomography

Search Result 117, Processing Time 0.025 seconds

Absorbed and effective dose from spiral and computed tomography for the dental implant planning (치과 임프란트 치료 계획을 위한 나선형 일반 단층촬영과 전산화 단층촬영시 흡수선량 및 유효선량 평가)

  • Hong Beong-Hee;Han Won-Jeong;Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.31 no.3
    • /
    • pp.165-173
    • /
    • 2001
  • Objectives : To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. Materials and Methods: For radiographic projection, TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophagus. Effective dose was calculated, using the method suggested by Frederiksen et al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. Results: The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Conclusions: Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning.

  • PDF

Can ultra-low-dose computed tomography reliably diagnose and classify maxillofacial fractures in the clinical routine?

  • Gerlig Widmann;Marcel Dangl;Elisa Lutz;Bernhard Fleckenstein;Vincent Offermanns;Eva-Maria Gassner;Wolfgang Puelacher;Lukas Salbrechter
    • Imaging Science in Dentistry
    • /
    • v.53 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • Purpose: Maxillofacial trauma predominantly affects young adults between 20 and 40 years of age. Although radioprotection is a legal requirement, the significant potential of dose reduction in computed tomography (CT) is still underused in the clinical routine. The objective of this study was to evaluate whether maxillofacial fractures can be reliably detected and classified using ultra-low-dose CT. Materials and Methods: CT images of 123 clinical cases with maxillofacial fractures were classified by two readers using the AOCOIAC software and compared with the corresponding results from post-treatment images. In group 1, consisting of 97 patients with isolated facial trauma, pre-treatment CT images at different dose levels (volumetric computed tomography dose index: ultra-low dose, 2.6 mGy; low dose, <10 mGy; and regular dose, <20 mGy) were compared with post-treatment cone-beam computed tomography (CBCT). In group 2, consisting of 31 patients with complex midface fractures, pre-treatment shock room CT images were compared with post-treatment CT at different dose levels or CBCT. All images were presented in random order and classified by 2 readers blinded to the clinical results. All cases with an unequal classification were re-evaluated. Results: In both groups, ultra-low-dose CT had no clinically relevant effect on fracture classification. Fourteen cases in group 2 showed minor differences in the classification code, which were no longer obvious after comparing the images directly to each other. Conclusion: Ultra-low-dose CT images allowed the correct diagnosis and classification of maxillofacial fractures. These results might lead to a substantial reconsideration of current reference dose levels.

Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

  • Jeong, Dae-Kyo;Lee, Sang-Chul;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-70
    • /
    • 2012
  • Purpose : The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Materials and Methods : Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. Results : The effective dose was the highest for Somatom Sensation 10 (425.84 ${\mu}Sv$), followed by AZ3000CT (332.4 ${\mu}Sv$), Somatom Emotion 6 (199.38 ${\mu}Sv$), and 3D eXaM (111.6 ${\mu}Sv$); it was the lowest for Implagraphy (83.09 ${\mu}Sv$). The CBCT showed significant variation in dose level with different device. Conclusion : The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

Evaluation of the Low Tube Voltage in the Computed Tomography Scan Technique using a Low Concentration Contrast Agent (저농도 조영제를 사용한 CT검사에서 저관전압 기법에 따른 유용성 평가)

  • Jung, Kang-Kyo;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.71-79
    • /
    • 2016
  • The purpose of this study is computed tomography contrast agent at low concentrations and low tube voltage technique to evaluate the usefulness on the phantom image. By varying the degree of mixture by the contrast medium concentration it was inserted in phantom. It was taken by changing the tube voltage and tube current step by step, and to evaluate the dose and the CT value obtained from the phantom image. As a result, low-contrast, low tube voltage(300 mgI/ml, 100 kV) was reduced by an average 21%(CTDIvol; computed tomography dose indexvol) more standard condition(350 mgI/ml, 120 kV). SNR was increased at all depths of the phantom, respectively 1:10 and 1:20(by diluting a contrast agent and normal saline) 12.2(26%) 6.2(17%). CNR was increased at all depths of the phantom, respectively 1:10 and 1:20(by diluting a contrast agent and normal saline) 11.5(32%), 6.3(26%). Research work on the CT scan is necessary in a variety of studies on the low contrast concentration and low tube voltage techniques for dose reduction and reducing of side effects the contrast agent.

Usability Evaluation of Applied Low-dose CT When Examining Urinary Calculus Using Computed Tomography (컴퓨터 단층촬영을 이용한 요로결석 검사에서 저선량 CT의 적용에 대한 유용성 평가)

  • Kim, Hyeon-Jin;Ji, Tae-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.81-85
    • /
    • 2017
  • The aim of this study was to evaluate the usability of applied Low dose Computed Tomography(LDCT) protocol in examining urinary calculus using computed tomography. The subjects of this study were urological patients who visited a medical institution located in Busan from June to December 2016 and the protocol used in this study was Adaptive Statistical Iterative Reconstruction: low-dose CT with 50% Adaptive Statistical Iterative Reconstruction (ASIR). As results of quantitative analysis, the mean pixel value and standard deviation within kidney region of image(ROI)of the axial image were $26.21{\pm}7.08$ in abdomen CT pre scan and $20.03{\pm}8.16$ in low-dose CT. Also the mean pixel value and standard deviation within kidney ROI of the coronal image were $22.07{\pm}7.35$ in abdomen CT pre scan and $21.67{\pm}6.11$ in low dose CT. The results of qualitative analysis showed that four raters' mean values of observed kidney artifacts were $19.14{\pm}0.36$ when using abdomen CT protocol and $19.17{\pm}0.43$ in low-dose CT, and the mean value of resolution and contrast was $19.35{\pm}0.70$ when using abdomen CT protocol and $19.29{\pm}0.58$ in low-dose CT. Also the results of a exposure dose analysis showed that the mean values of CTDIvol and DLP in abdomen CT pre scan were 18.02 mGy and $887.51mGy{\cdot}cm$ respectively and the mean values of CTDIvol and DLP when using low-dose CT protocol were 7.412 mGy and $361.22mGy{\cdot}cm$ respectively. The resulting dose reduction rate was 58.82% and 59.29%, respectively.

Absorbed and effective dose from newly developed cone beam computed tomography in Korea (최근 개발된 cone beam computed tomography의 흡수선량 및 유효선량 평가)

  • Lee, Jong-Nyeong;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.93-102
    • /
    • 2007
  • Purpose: Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absorbed and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Materials and Methods: Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposures. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Results: Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Conclusion: Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  • PDF

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

Therapeutic Advantages of Treatment of High-Dose Curcumin in the Ovariectomized Rat

  • Cho, Dae-Chul;Jung, Hyun-Sik;Kim, Kyoung-Tae;Jeon, Younghoon;Sung, Joo-Kyung;Hwang, Jeong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.6
    • /
    • pp.461-466
    • /
    • 2013
  • Objective : Although curcumin has a protective effect on bone remodeling, appropriate therapeutic concentrations of curcumin are not well known as therapeutic drugs for osteoporosis. The purpose of this study was to compare the bone sparing effect of treatment of low-dose and high-dose curcumin after ovariectomy in rats. Methods : Forty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed among three groups; untreated OVX group, low-dose (10 mg/kg) curcumin administered group, and high-dose (50 mg/kg) curcumin group. At 4 and 8 weeks after surgery, serum biochemical markers of bone turnover were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test. Results : High-dose curcumin group showed significantly lower osteocalcin, alkaline phosphatase, and the telopeptide fragment of type I collagen C-terminus concentration at 4 and 8 weeks compared with the untreated OVX group as well as low-dose curcumin group. In the analyses of micro-CT scans of 4th lumbar vertebrae, the high-dose curcumin treated group showed a significant increase in bone mineral densities (p=0.028) and cortical bone mineral densities (p=0.036) compared with the low-dose curcumin treated group. Only high-dose curcumin treated group had a significant increase of mechanical strength compared with the untreated OVX group (p=0.015). Conclusion : The present study results demonstrat that a high-dose curcumin has therapeutic advantages over a low-dose curcumin of an antiresorptive effect on bone remodeling and improving bone mechanical strength.

Cone-beam computed tomography: Time to move from ALARA to ALADA

  • Jaju, Prashant P.;Jaju, Sushma P.
    • Imaging Science in Dentistry
    • /
    • v.45 no.4
    • /
    • pp.263-265
    • /
    • 2015
  • Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of "as low as reasonably achievable" (ALARA) to "as low as diagnostically acceptable" (ALADA).